okpred {spm} | R Documentation |
Generate spatial predictions using ordinary kriging (OK)
Description
This function is to make spatial predictions using ordinary kriging.
Usage
okpred(
longlat,
trainy,
longlat2,
nmax = 12,
transformation = "none",
delta = 1,
vgm.args = ("Sph"),
anis = c(0, 1),
alpha = 0,
block = 0,
...
)
Arguments
longlat |
a dataframe contains longitude and latitude of point samples. |
trainy |
a vector of response, must have length equal to the number of rows in longlat. |
longlat2 |
a dataframe contains longitude and latitude of point locations (i.e., the centres of grids) to be predicted. |
nmax |
for local kriging: the number of nearest observations that should be used for a kriging prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used. |
transformation |
transform the response variable to normalise the data; can be "sqrt" for square root, "arcsine" for arcsine, "log" or "none" for non transformation. By default, "none" is used. |
delta |
numeric; to avoid log(0) in the log transformation. |
vgm.args |
arguments for vgm, e.g. variogram model of response variable and anisotropy parameters. see notes vgm in gstat for details. By default, "Sph" is used. |
anis |
anisotropy parameters: see notes vgm in gstat for details. |
alpha |
direction in plane (x,y). see variogram in gstat for details. |
block |
block size. see krige in gstat for details. |
... |
other arguments passed on to gstat. |
Value
A dataframe of longitude, latitude, predictions and variances.
Author(s)
Jin Li
References
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30: 683-691.
Examples
## Not run:
library(sp)
data(swmud)
data(sw)
okpred1 <- okpred(swmud[, c(1,2)], swmud[, 3], sw, nmax = 7, transformation =
"arcsine", vgm.args = ("Sph"))
names(okpred1)
## End(Not run)