sbinaryLGMM {spldv} | R Documentation |
Estimation of SAR for binary models using Linearized GMM.
Description
Estimation of SAR model for binary dependent variables (either Probit or Logit), using Linearized GMM estimator suggested by Klier and McMillen (2008). The model is:
y^*= X\beta + WX\gamma + \lambda W y^* + \epsilon = Z\delta + \lambda Wy^{*} + \epsilon
where y = 1
if y^*>0
and 0 otherwise; \epsilon \sim N(0, 1)
if link = "probit"
or \epsilon \sim L(0, \pi^2/3)
link = "logit"
.
Usage
sbinaryLGMM(
formula,
data,
listw = NULL,
nins = 2,
link = c("logit", "probit"),
...
)
## S3 method for class 'binlgmm'
coef(object, ...)
## S3 method for class 'binlgmm'
vcov(object, ...)
## S3 method for class 'binlgmm'
print(x, digits = max(3, getOption("digits") - 3), ...)
## S3 method for class 'binlgmm'
summary(object, ...)
## S3 method for class 'summary.binlgmm'
print(x, digits = max(3, getOption("digits") - 2), ...)
Arguments
formula |
a symbolic description of the model of the form |
data |
the data of class |
listw |
object. An object of class |
nins |
numerical. Order of instrumental-variable approximation; as default |
link |
string. The assumption of the distribution of the error term; it can be either |
... |
additional arguments. |
x , object |
an object of class |
digits |
the number of digits |
Details
The steps for the linearized spatial Probit/Logit model are the following:
1. Estimate the model by standard Probit/Logit model, in which spatial autocorrelation and heteroskedasticity are ignored. The estimated values are \beta_0
. Calculate the generalized residuals assuming that \lambda = 0
and the gradient terms G_{\beta}
and G_{\lambda}
.
2. The second step is a two-stage least squares estimator of the linearized model. Thus regress G_{\beta}
and G_{\lambda}
on H = (Z, WZ, W^2Z, ...., W^qZ)
and obtain the predicted values \hat{G}
. Then regress u_0 + G_{\beta}'\hat{\beta}_0
on \hat{G}
. The coefficients are the estimated values of \beta
and \lambda
.
The variance-covariance matrix can be computed using the traditional White-corrected coefficient covariance matrix from the last two-stage least squares estimator of the linearlized model.
Value
An object of class “bingmm
”, a list with elements:
coefficients |
the estimated coefficients, |
call |
the matched call, |
X |
the X matrix, which contains also WX if the second part of the |
H |
the H matrix of instruments used, |
y |
the dependent variable, |
listw |
the spatial weight matrix, |
link |
the string indicating the distribution of the error term, |
fit |
an object of |
formula |
the formula. |
Author(s)
Mauricio Sarrias and Gianfranco Piras.
References
Klier, T., & McMillen, D. P. (2008). Clustering of auto supplier plants in the United States: generalized method of moments spatial logit for large samples. Journal of Business & Economic Statistics, 26(4), 460-471.
Piras, G., & Sarrias, M. (2023). One or Two-Step? Evaluating GMM Efficiency for Spatial Binary Probit Models. Journal of choice modelling, 48, 100432.
Piras, G,. & Sarrias, M. (2023). GMM Estimators for Binary Spatial Models in R. Journal of Statistical Software, 107(8), 1-33.
See Also
Examples
# Data set
data(oldcol, package = "spdep")
# Create dependent (dummy) variable
COL.OLD$CRIMED <- as.numeric(COL.OLD$CRIME > 35)
# LGMM for probit using q = 3 for instruments
lgmm <- sbinaryLGMM(CRIMED ~ INC + HOVAL | INC,
link = "probit",
listw = spdep::nb2listw(COL.nb, style = "W"),
nins = 3,
data = COL.OLD)
summary(lgmm)