impacts.bingmm {spldv} | R Documentation |
Estimation of the average marginal effects for SARB model estimated using GMM procedures.
Description
Obtain the average marginal effects from bingmm
or binlgmm
class model.
Usage
## S3 method for class 'bingmm'
impacts(
object,
vcov = NULL,
vce = c("robust", "efficient", "ml"),
het = TRUE,
atmeans = FALSE,
type = c("mc", "delta"),
R = 100,
approximation = FALSE,
pw = 5,
tol = 1e-06,
empirical = FALSE,
...
)
## S3 method for class 'binlgmm'
impacts(
object,
vcov = NULL,
het = TRUE,
atmeans = FALSE,
type = c("mc", "delta"),
R = 100,
approximation = FALSE,
pw = 5,
tol = 1e-06,
empirical = FALSE,
...
)
## S3 method for class 'impacts.bingmm'
print(x, ...)
## S3 method for class 'impacts.bingmm'
summary(object, ...)
## S3 method for class 'summary.impacts.bingmm'
print(x, digits = max(3, getOption("digits") - 3), ...)
Arguments
object |
an object of class |
vcov |
an estimate of the asymptotic variance-covariance matrix of the parameters for a |
vce |
string indicating what kind of variance-covariance matrix of the estimate should be computed when using |
het |
logical. If |
atmeans |
logical. If |
type |
string indicating which method is used to compute the standard errors of the average marginal effects. If |
R |
numerical. Indicates the number of draws used in the Monte Carlo approximation if |
approximation |
logical. If |
pw |
numeric. The power used for the approximation |
tol |
Argument passed to |
empirical |
logical. Argument passed to |
... |
further arguments. Ignored. |
x |
an object of class |
digits |
the number of digits. |
Details
Let the model be:
y^*= X\beta + WX\gamma + \lambda W y^* + \epsilon = Z\delta + \lambda Wy^{*} + \epsilon
where y = 1
if y^*>0
and 0 otherwise; \epsilon \sim N(0, 1)
if link = "probit"
or \epsilon \sim L(0, \pi^2/3)
if link = "logit"
.
The marginal effects respect to variable x_r
can be computed as
diag(f(a))D^{-1}_{\lambda}A^{-1}_{\lambda}\left(I_n\beta_r + W\gamma_r\right) = C_r(\theta)
where f()
is the pdf, which depends on the assumption of the error terms; diag
is the operator that creates a n \times n
diagonal matrix; A_{\lambda}= (I -\lambda W)
; and D_{\lambda}
is a diagonal matrix whose elements represent the square root of the diagonal elements of the variance-covariance matrix of u = A_{\lambda}^{-1}\epsilon
.
We implement these three summary measures: (1) The average total effects, ATE_r = n^{-1}i_n'C_{r}i_n
, (2) The average direct effects, ADE_r = n^{-1}tr(C_{r})
, and (3) the average indirect effects, ATE_r - ADE_r
.
The standard errors of the average total, direct and indirect effects can be estimated using either Monte Carlo (MC) approximation, which takes into account the sampling distribution of \theta
, or Delta Method.
Value
An object of class impacts.bingmm
.
Author(s)
Mauricio Sarrias and Gianfranco Piras.
See Also
Examples
# Data set
data(oldcol, package = "spdep")
# Create dependent (dummy) variable
COL.OLD$CRIMED <- as.numeric(COL.OLD$CRIME > 35)
# Two-step (Probit) GMM estimator
ts <- sbinaryGMM(CRIMED ~ INC + HOVAL| HOVAL,
link = "probit",
listw = spdep::nb2listw(COL.nb, style = "W"),
data = COL.OLD,
type = "twostep")
# Marginal effects using Delta Method
summary(impacts(ts, type = "delta"))
# Marginal effects using MC with 100 draws
summary(impacts(ts, type = "mc", R = 100))
# Marginal effects using efficient VC matrix
summary(impacts(ts, type = "delta", vce = "efficient"))
# Marginal effects using efficient VC matrix and ignoring the heteroskedasticity
summary(impacts(ts, type = "delta", vce = "efficient", het = FALSE))