calc_daily_solar {splash} | R Documentation |
Calculate daily solar radiation fluxes
Description
This function calculates daily solar radiation fluxes.
Usage
calc_daily_solar(
lat,
n,
elv = 0,
y = 0,
sf = 1,
tc = 23,
ke = 0.0167,
keps = 23.44,
komega = 283,
kA = 107,
kalb_sw = 0.17,
kalb_vis = 0.03,
kb = 0.2,
kc = 0.25,
kd = 0.5,
kfFEC = 2.04,
kGsc = 1360.8
)
Arguments
lat |
double, decimal degrees. |
n |
double, day of year. |
elv |
double, elevation, m A.S.L.
Default: |
y |
double, year.
Default: |
sf |
double, fraction of sunshine hours.
Default: |
tc |
double, mean daily air temperature, degrees C.
Default: |
ke |
double, eccentricity of earth's orbit.
Default: |
keps |
double, obliquity of earth's elliptic.
Default: |
komega |
double, lon. of perihelion, degrees
Default: |
kA |
double, empirical constant, degrees Celsius.
Default: |
kalb_sw |
double, shortwave albedo.
Default: |
kalb_vis |
double, visible light albedo.
Default: |
kb |
double, empirical constant.
Default: |
kc |
double, cloudy transmittivity.
Default: |
kd |
double, angular coefficient of transmittivity.
Default: |
kfFEC |
double, flux-to-energy conversion, umol/J.
Default: |
kGsc |
double, solar constant, W/m^2.
Default: |
Value
Returns a list
object with the following variables:
nu_deg ............ true anomaly, degrees
lambda_deg ........ true longitude, degrees
dr ................ distance factor, unitless
delta_deg ......... declination angle, degrees
hs_deg ............ sunset angle, degrees
ra_j.m2 ........... daily extraterrestrial radiation, J/m^2
tau ............... atmospheric transmittivity, unitless
ppfd_mol.m2 ....... daily photosyn. photon flux density, mol/m^2
hn_deg ............ net radiation hour angle, degrees
rn_j.m2 ........... daily net radiation, J/m^2
rnn_j.m2 .......... daily nighttime net radiation, J/m^2
References
Berger, A.L., 1978. Long-term variations of daily insolation and Quaternary climatic changes. Journal of Atmospheric Sciences, 35(12), pp.2362-2367. doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2
Federer, C.A., 1968. Spatial variation of net radiation, albedo and surface temperature of forests. Journal of Applied Meteorology and Climatology, 7(5), pp.789-795. doi:10.1175/1520-0450(1968)007<0789:SVONRA>2.0.CO;2
Kopp, G. and Lean, J.L., 2011. A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 38, L01706. doi:10.1029/2010GL045777
Linacre, E.T., 1968. Estimating the net-radiation flux. Agricultural meteorology, 5(1), pp.49-63. doi:10.1016/0002-1571(68)90022-8
Meek, D.W., Hatfield, J.L., Howell, T.A., Idso, S.B. and Reginato, R.J., 1984. A generalized relationship between photosynthetically active radiation and solar radiation 1. Agronomy journal, 76(6), pp.939-945. doi:10.2134/agronj1984.00021962007600060018x
Monteith, J., and Unsworth, M., 1990. Principles of Environmental Physics, Butterworth-Heinemann, Oxford.
Sellers, P.J., 1985. Canopy reflectance, photosynthesis and transpiration, International Journal of Remote Sensing, 6:8, 1335-1372, doi:10.1080/01431168508948283
Examples
solar <- splash::calc_daily_solar(lat = 37.7,
n = 172,
elv = 142,
y = 2000,
sf = 1,
tc = 23.0)
cat(sprintf("Solar values:\n"))
cat(sprintf(" kn: %d\n", solar$kN))
cat(sprintf(" nu: %0.6f degrees\n", solar$nu_deg))
cat(sprintf(" lambda: %0.6f degrees\n", solar$lambda_deg))
cat(sprintf(" rho: %0.6f\n", solar$rho))
cat(sprintf(" dr: %0.6f\n", solar$dr))
cat(sprintf(" delta: %0.6f degrees\n", solar$delta_deg))
cat(sprintf(" ru: %0.6f\n", solar$ru))
cat(sprintf(" rv: %0.6f\n", solar$rv))
cat(sprintf(" rw: %0.6f\n", solar$rw))
cat(sprintf(" hs: %0.6f degrees\n", solar$hs_deg))
cat(sprintf(" hn: %0.6f degrees\n", solar$hn_deg))
cat(sprintf(" tau_o: %0.6f\n", solar$tau_o))
cat(sprintf(" tau: %0.6f\n", solar$tau))
cat(sprintf(" Qn: %0.6f mol/m^2\n", solar$ppfd_mol.m2))
cat(sprintf(" Rnl: %0.6f w/m^2\n", solar$rnl_w.m2))
cat(sprintf(" Ho: %0.6f MJ/m^2\n", (1.0e-6) * solar$ra_j.m2))
cat(sprintf(" Hn: %0.6f MJ/m^2\n", (1.0e-6) * solar$rn_j.m2))
cat(sprintf(" Hnn: %0.6f MJ/m^2\n", (1.0e-6) * solar$rnn_j.m2))