unif_test {sphunif} | R Documentation |
Circular and (hyper)spherical uniformity tests
Description
Implementation of several uniformity tests on the (hyper)sphere
S^{p-1}:=\{{\bf x}\in R^p:||{\bf x}||=1\}
, p\ge 2
, with calibration either in
terms of their asymptotic/exact distributions, if available, or Monte Carlo.
unif_test
receives a sample of directions
{\bf X}_1,\ldots,{\bf X}_n\in S^{p-1}
in
Cartesian coordinates, except for the circular case (p=2
) in
which the sample can be represented in terms of angles
\Theta_1,\ldots,\Theta_n\in [0, 2\pi)
.
unif_test
allows to perform several tests within a single call,
facilitating thus the exploration of a dataset by applying several tests.
Usage
unif_test(data, type = "all", p_value = "asymp", alpha = c(0.1, 0.05,
0.01), M = 10000, stats_MC = NULL, crit_val = NULL,
data_sorted = FALSE, K_max = 10000, method = "I", CCF09_dirs = NULL,
CJ12_beta = 0, CJ12_reg = 3, cov_a = 2 * pi, Cressie_t = 1/3,
K_CCF09 = 25, Poisson_rho = 0.5, Pycke_q = 0.5, Rayleigh_m = 1,
Riesz_s = 1, Rothman_t = 1/3, Sobolev_vk2 = c(0, 0, 1),
Softmax_kappa = 1, Stereo_a = 0, ...)
Arguments
data |
sample to perform the test. A matrix of size |
type |
type of test to be applied. A character vector containing any of
the following types of tests, depending on the dimension
If |
p_value |
type of |
alpha |
vector with significance levels. Defaults to
|
M |
number of Monte Carlo replications for approximating the null
distribution when |
stats_MC |
a data frame of size |
crit_val |
table with critical values for the tests, to be used if
|
data_sorted |
is the circular data sorted? If |
K_max |
integer giving the truncation of the series that compute the
asymptotic p-value of a Sobolev test. Defaults to |
method |
method for approximating the density, distribution, or
quantile function of the weighted sum of chi squared random variables. Must
be |
CCF09_dirs |
a matrix of size |
CJ12_beta |
|
CJ12_reg |
type of asymptotic regime for CJ12 test, either |
cov_a |
|
Cressie_t |
|
K_CCF09 |
integer giving the truncation of the series present in the
asymptotic distribution of the Kolmogorov-Smirnov statistic. Defaults to
|
Poisson_rho |
|
Pycke_q |
|
Rayleigh_m |
integer |
Riesz_s |
|
Rothman_t |
|
Sobolev_vk2 |
weights for the finite Sobolev test. A non-negative
vector or matrix. Defaults to |
Softmax_kappa |
|
Stereo_a |
|
... |
If |
Details
All the tests reject for large values of the test statistic, so the critical
values for the significance levels alpha
correspond to the
alpha
-upper quantiles of the null distribution of the test statistic.
When p_value = "asymp"
, tests that do not have an implemented or
known asymptotic are omitted, and a warning is generated.
When p_value = "MC"
, it is possible to have a progress bar indicating
the Monte Carlo simulation progress if unif_test
is wrapped with
progressr::with_progress
or if
progressr::handlers(global = TRUE)
is invoked (once) by the user.
See the examples below. The progress bar is updated with the number of
finished chunks.
All the statistics are continuous random variables except the
Hodges–Ajne statistic ("Hodges_Ajne"
), the Cressie statistic
("Cressie"
), and the number of (different) uncovered spacings
("Num_uncover"
). These three statistics are discrete random variables.
The Monte Carlo calibration for the CCF09 test is made conditionally
on the choice of CCF09_dirs
. That is, all the Monte
Carlo statistics share the same random directions.
Except for CCF09_dirs
, K_CCF09
, and CJ12_reg
, all the
test-specific parameters are vectorized.
Descriptions and references for most of the tests are available in García-Portugués and Verdebout (2018).
Value
If only a single test is performed, a list with class
htest
containing the following components:
-
statistic
: the value of the test statistic. -
p.value
: the p-value of the test. Ifp_value = "crit_val"
, anNA
. -
alternative
: a character string describing the alternative hypothesis. -
method
: a character string indicating what type of test was performed. -
data.name
: a character string giving the name of the data. -
reject
: the rejection decision for the levels of significancealpha
. -
crit_val
: a vector with the critical values for the significance levelsalpha
used withp_value = "MC"
orp_value = "asymp"
. -
param
: parameter(s) used in the test (if any).
If several tests are performed, a type
-named list with
entries for each test given by the above list.
References
García-Portugués, E. and Verdebout, T. (2018) An overview of uniformity tests on the hypersphere. arXiv:1804.00286. doi:10.48550/arXiv.1804.00286.
Examples
## Asymptotic distribution
# Circular data
n <- 10
samp_cir <- r_unif_cir(n = n)
# Matrix
unif_test(data = samp_cir, type = "Ajne", p_value = "asymp")
# Vector
unif_test(data = samp_cir[, 1], type = "Ajne", p_value = "asymp")
# Array
unif_test(data = array(samp_cir, dim = c(n, 1, 1)), type = "Ajne",
p_value = "asymp")
# Several tests
unif_test(data = samp_cir, type = avail_cir_tests, p_value = "asymp")
# Spherical data
n <- 10
samp_sph <- r_unif_sph(n = n, p = 3)
# Array
unif_test(data = samp_sph, type = "Bingham", p_value = "asymp")
# Matrix
unif_test(data = samp_sph[, , 1], type = "Bingham", p_value = "asymp")
# Several tests
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "asymp")
## Monte Carlo
# Circular data
unif_test(data = samp_cir, type = "Ajne", p_value = "MC")
unif_test(data = samp_cir, type = avail_cir_tests, p_value = "MC")
# Spherical data
unif_test(data = samp_sph, type = "Bingham", p_value = "MC")
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "MC")
# Caching stats_MC
stats_MC_cir <- unif_stat_MC(n = nrow(samp_cir), p = 2)$stats_MC
stats_MC_sph <- unif_stat_MC(n = nrow(samp_sph), p = 3)$stats_MC
unif_test(data = samp_cir, type = avail_cir_tests,
p_value = "MC", stats_MC = stats_MC_cir)
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "MC",
stats_MC = stats_MC_sph)
## Critical values
# Circular data
unif_test(data = samp_cir, type = avail_cir_tests, p_value = "crit_val")
# Spherical data
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "crit_val")
# Caching crit_val
crit_val_cir <- unif_stat_MC(n = n, p = 2)$crit_val_MC
crit_val_sph <- unif_stat_MC(n = n, p = 3)$crit_val_MC
unif_test(data = samp_cir, type = avail_cir_tests,
p_value = "crit_val", crit_val = crit_val_cir)
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "crit_val",
crit_val = crit_val_sph)
## Specific arguments
# Rothman
unif_test(data = samp_cir, type = "Rothman", Rothman_t = 0.5)
# CCF09
unif_test(data = samp_sph, type = "CCF09", p_value = "MC",
CCF09_dirs = samp_sph[1:2, , 1])
unif_test(data = samp_sph, type = "CCF09", p_value = "MC",
CCF09_dirs = samp_sph[3:4, , 1])
## Using a progress bar when p_value = "MC"
# Define a progress bar
require(progress)
require(progressr)
handlers(handler_progress(
format = paste("(:spin) [:bar] :percent Iter: :current/:total Rate:",
":tick_rate iter/sec ETA: :eta Elapsed: :elapsedfull"),
clear = FALSE))
# Call unif_test() within with_progress()
with_progress(
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "MC",
chunks = 10, M = 1e3)
)
# With several cores
with_progress(
unif_test(data = samp_sph, type = avail_sph_tests, p_value = "MC",
cores = 2, chunks = 10, M = 1e3)
)
# Instead of using with_progress() each time, it is more practical to run
# handlers(global = TRUE)
# once to activate progress bars in your R session