LMZ.F3GWR.test {spgwr} | R Documentation |
Global tests of geographical weighted regressions
Description
Four related test statistics for comparing OLS and GWR models based on bapers by Brunsdon, Fotheringham and Charlton (1999) and Leung et al (2000), and a development from the GWR book (2002).
Usage
LMZ.F3GWR.test(go)
LMZ.F2GWR.test(x)
LMZ.F1GWR.test(x)
BFC99.gwr.test(x)
BFC02.gwr.test(x, approx=FALSE)
## S3 method for class 'gwr'
anova(object, ..., approx=FALSE)
Arguments
go , x , object |
a |
... |
arguments passed through (unused) |
approx |
default FALSE, if TRUE, use only (n - tr(S)) instead of (n - 2*tr(S) - tr(S'S)) as the GWR degrees of freedom |
Details
The papers in the references give the background for the analyses of variance presented.
Value
BFC99.GWR.test, BFC02.gwr.test, LMZ.F1GWR.test and LMZ.F2GWR.test return "htest" objects, LMZ.F3GWR.test a matrix of test results.
Author(s)
Roger Bivand Roger.Bivand@nhh.no and Danlin Yu
References
Fotheringham, A.S., Brunsdon, C., and Charlton, M.E., 2002, Geographically Weighted Regression, Chichester: Wiley; http://gwr.nuim.ie/
See Also
Examples
data(columbus, package="spData")
col.bw <- gwr.sel(CRIME ~ INC + HOVAL, data=columbus,
coords=cbind(columbus$X, columbus$Y))
col.gauss <- gwr(CRIME ~ INC + HOVAL, data=columbus,
coords=cbind(columbus$X, columbus$Y), bandwidth=col.bw, hatmatrix=TRUE)
BFC99.gwr.test(col.gauss)
BFC02.gwr.test(col.gauss)
BFC02.gwr.test(col.gauss, approx=TRUE)
anova(col.gauss)
anova(col.gauss, approx=TRUE)
## Not run:
col.d <- gwr.sel(CRIME ~ INC + HOVAL, data=columbus,
coords=cbind(columbus$X, columbus$Y), gweight=gwr.bisquare)
col.bisq <- gwr(CRIME ~ INC + HOVAL, data=columbus,
coords=cbind(columbus$X, columbus$Y), bandwidth=col.d,
gweight=gwr.bisquare, hatmatrix=TRUE)
BFC99.gwr.test(col.bisq)
## End(Not run)