moran.mc {spdep} | R Documentation |
Permutation test for Moran's I statistic
Description
A permutation test for Moran's I statistic calculated by using nsim random permutations of x for the given spatial weighting scheme, to establish the rank of the observed statistic in relation to the nsim simulated values.
Usage
moran.mc(x, listw, nsim, zero.policy=attr(listw, "zero.policy"),
alternative="greater", na.action=na.fail, spChk=NULL, return_boot=FALSE,
adjust.n=TRUE)
Arguments
x |
a numeric vector the same length as the neighbours list in listw |
listw |
a |
nsim |
number of permutations |
zero.policy |
default |
alternative |
a character string specifying the alternative hypothesis, must be one of "greater" (default), "two.sided", or "less". |
na.action |
a function (default |
spChk |
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use |
return_boot |
return an object of class |
adjust.n |
default TRUE, if FALSE the number of observations is not adjusted for no-neighbour observations, if TRUE, the number of observations is adjusted |
Value
A list with class htest
and mc.sim
containing the following components:
statistic |
the value of the observed Moran's I. |
parameter |
the rank of the observed Moran's I. |
p.value |
the pseudo p-value of the test. |
alternative |
a character string describing the alternative hypothesis. |
method |
a character string giving the method used. |
data.name |
a character string giving the name(s) of the data, and the number of simulations. |
res |
nsim simulated values of statistic, final value is observed statistic |
Author(s)
Roger Bivand Roger.Bivand@nhh.no
References
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 63-5.
See Also
Examples
data(oldcol)
colw <- nb2listw(COL.nb, style="W")
nsim <- 99
set.seed(1234)
sim1 <- moran.mc(COL.OLD$CRIME, listw=colw, nsim=nsim)
sim1
mean(sim1$res[1:nsim])
var(sim1$res[1:nsim])
summary(sim1$res[1:nsim])
colold.lags <- nblag(COL.nb, 3)
set.seed(1234)
sim2 <- moran.mc(COL.OLD$CRIME, nb2listw(colold.lags[[2]],
style="W"), nsim=nsim)
summary(sim2$res[1:nsim])
sim3 <- moran.mc(COL.OLD$CRIME, nb2listw(colold.lags[[3]],
style="W"), nsim=nsim)
summary(sim3$res[1:nsim])
crime <- COL.OLD$CRIME
is.na(crime) <- sample(1:length(crime), 10)
try(moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99,
na.action=na.fail))
moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE,
na.action=na.omit)
moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE,
return_boot=TRUE, na.action=na.omit)
moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE,
na.action=na.exclude)
moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, zero.policy=TRUE,
return_boot=TRUE, na.action=na.exclude)
try(moran.mc(crime, nb2listw(COL.nb, style="W"), nsim=99, na.action=na.pass))