| moran {spdep} | R Documentation | 
Compute Moran's I
Description
A simple function to compute Moran's I, called by moran.test and moran.mc;
I = \frac{n}{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}}
\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}w_{ij}(x_i-\bar{x})(x_j-\bar{x})}{\sum_{i=1}^{n}(x_i - \bar{x})^2}
Usage
moran(x, listw, n, S0, zero.policy=attr(listw, "zero.policy"), NAOK=FALSE)
Arguments
x | 
 a numeric vector the same length as the neighbours list in listw  | 
listw | 
 a   | 
n | 
 number of zones  | 
S0 | 
 global sum of weights  | 
zero.policy | 
 default   | 
NAOK | 
 if 'TRUE' then any 'NA' or 'NaN' or 'Inf' values in x are passed on to the foreign function. If 'FALSE', the presence of 'NA' or 'NaN' or 'Inf' values is regarded as an error.  | 
Value
a list of
I | 
 Moran's I  | 
K | 
 sample kurtosis of x  | 
Author(s)
Roger Bivand Roger.Bivand@nhh.no
References
Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, p. 17.
See Also
Examples
data(oldcol)
col.W <- nb2listw(COL.nb, style="W")
crime <- COL.OLD$CRIME
str(moran(crime, col.W, length(COL.nb), Szero(col.W)))
is.na(crime) <- sample(1:length(crime), 10)
str(moran(crime, col.W, length(COL.nb), Szero(col.W), NAOK=TRUE))