LOSH.mc {spdep} | R Documentation |
Bootstrapping-based test for local spatial heteroscedasticity
Description
The function draws inferences about local spatial heteroscedasticity (LOSH) by means of the randomisation-based Monte-Carlo bootstrap proposed by Xu et al. (2014).
Usage
LOSH.mc(x, listw, a = 2, nsim = 99, zero.policy = attr(listw, "zero.policy"),
na.action = na.fail, spChk = NULL, adjust.n = TRUE, p.adjust.method = "none")
Arguments
x |
a numeric vector of the same length as the neighbours list in listw |
listw |
a |
a |
the exponent applied to the local residuals; the default value of 2 leads to a measure of heterogeneity in the spatial variance |
nsim |
the number of randomisations used in the bootstrap |
zero.policy |
default |
na.action |
a function (default |
spChk |
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use |
adjust.n |
default TRUE, if FALSE the number of observations is not adjusted for no-neighbour observations, if TRUE, the number of observations is adjusted |
p.adjust.method |
a character string specifying the probability value adjustment for multiple tests, default "none"; see |
Details
The test calculates LOSH (see LOSH
) and estimates pseudo p-values from a conditional bootstrap. Thereby, the i-th value in each location is held fixed, whereas all other values are permuted nsim
times over all other spatial units.
Value
Hi |
LOSH statistic |
E.Hi |
expectation of LOSH |
Var.Hi |
variance of LOSH |
Z.Hi |
the approximately chi-square distributed test statistics |
x_bar_i |
local spatially weighted mean values |
ei |
residuals about local spatially weighted mean values |
Pr() |
p-values for |
Author(s)
René Westerholt rene.westerholt@tu-dortmund.de
References
Ord, J. K., & Getis, A. 2012. Local spatial heteroscedasticity (LOSH), The Annals of Regional Science, 48 (2), 529–539; Xu, M., Mei, C. L., & Yan, N. 2014. A note on the null distribution of the local spatial heteroscedasticity (LOSH) statistic. The Annals of Regional Science, 52 (3), 697–710.
See Also
Examples
data(columbus, package="spData")
resLOSH_mc <- LOSH.mc(columbus$CRIME, nb2listw(col.gal.nb), 2, 100)
summary(resLOSH_mc)
resLOSH_cs <- LOSH.cs(columbus$CRIME, nb2listw(col.gal.nb))
summary(resLOSH_cs)
plot(resLOSH_mc[,"Pr()"], resLOSH_cs[,"Pr()"])