ProxADMM {spcov} | R Documentation |
Solving penalized Frobenius problem.
Description
This function solves the optimization problem
Usage
ProxADMM(A, del, lam, P, rho = 0.1, tol = 1e-06, maxiters = 100, verb = FALSE)
Arguments
A |
A symmetric matrix. |
del |
A non-negative scalar. Lower bound on eigenvalues. |
lam |
A non-negative scalar. L1 penalty parameter. |
P |
Matrix with non-negative elements and dimension of A. Allows for differing L1 penalty parameters. |
rho |
ADMM parameter. Can affect rate of convergence a lot. |
tol |
Convergence threshold. |
maxiters |
Maximum number of iterations. |
verb |
Controls whether to be verbose. |
Details
Minimize_X (1/2)||X - A||_F^2 + lam||P*X||_1 s.t. X >= del * I.
This is the prox function for the generalized gradient descent of Bien & Tibshirani 2011 (see full reference below).
This is the R implementation of the algorithm in Appendix 3 of Bien, J., and Tibshirani, R. (2011), "Sparse Estimation of a Covariance Matrix," Biometrika. 98(4). 807–820. It uses an ADMM approach to solve the problem
Minimize_X (1/2)||X - A||_F^2 + lam||P*X||_1 s.t. X >= del * I.
Here, the multiplication between P and X is elementwise. The inequality in the constraint is a lower bound on the minimum eigenvalue of the matrix X.
Note that there are two variables X and Z that are outputted. Both are estimates of the optimal X. However, Z has exact zeros whereas X has eigenvalues at least del. Running the ADMM algorithm long enough, these two are guaranteed to converge.
Value
X |
Estimate of optimal X. |
Z |
Estimate of optimal X. |
obj |
Objective values. |
Author(s)
Jacob Bien and Rob Tibshirani
References
Bien, J., and Tibshirani, R. (2011), "Sparse Estimation of a Covariance Matrix," Biometrika. 98(4). 807–820.
See Also
spcov
Examples
set.seed(1)
n <- 100
p <- 200
# generate a covariance matrix:
model <- GenerateCliquesCovariance(ncliques=4, cliquesize=p / 4, 1)
# generate data matrix with x[i, ] ~ N(0, model$Sigma):
x <- matrix(rnorm(n * p), ncol=p) %*% model$A
S <- var(x)
# compute sparse, positive covariance estimator:
P <- matrix(1, p, p)
diag(P) <- 0
lam <- 0.1
aa <- ProxADMM(S, 0.01, lam, P)