estimate-methods {spcosa} | R Documentation |
Estimating Statistics
Description
Methods for estimating statistics given a spatial sample.
Methods
- statistic = "character", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame"
estimates one of the following statistics, depending on the value of argument
statistic
:spatial mean
,spatial variance
,sampling variance
,standard error
, orscdf
. See the examples below for details.- statistic = "character", stratification = "CompactStratificationEqualArea", samplingPattern = "SamplingPatternRandomComposite", data = "data.frame"
estimates one of the following statistics, depending on the value of argument
statistic
:spatial mean
,sampling variance
, orstandard error
.- statistic = "SamplingVariance", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame"
estimates the sampling variance. See
"SamplingVariance"
for more details.- statistic = "StandardError", stratification = "CompactStratificationEqualArea", samplingPattern = "SamplingPatternRandomComposite", data = "data.frame"
estimates the standard error of the spatial mean. See
"StandardError"
for more details.- statistic = "SpatialCumulativeDistributionFunction", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame"
estimates the spatial cumulative distribution function (SCDF). See
"SamplingPatternRandomSamplingUnits"
for more details.- statistic = "SpatialMean", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame"
estimates the spatial mean. See
"SpatialMean"
for more details.- statistic = "SpatialVariance", stratification = "CompactStratification", samplingPattern = "SamplingPatternRandomSamplingUnits", data = "data.frame"
estimates the spatial variance. See
"SpatialVariance"
for more details.
Examples
# Note: the example below requires the 'sf'-package.
if (require(sf)) {
# read vector representation of the "Mijdrecht" area
shp <- as(st_read(
dsn = system.file("maps", package = "spcosa"),
layer = "mijdrecht"), "Spatial")
# stratify into 30 strata
myStratification <- stratify(shp, nStrata = 30, nTry = 10, verbose = TRUE)
# random sampling of two sampling units per stratum
mySamplingPattern <- spsample(myStratification, n = 2)
# plot sampling pattern
plot(myStratification, mySamplingPattern)
# simulate data
# (in real world cases these data have to be obtained by field work etc.)
myData <- as(mySamplingPattern, "data.frame")
myData$observation <- rnorm(n = nrow(myData), mean = 10, sd = 1)
# design-based inference
estimate("spatial mean", myStratification, mySamplingPattern, myData["observation"])
estimate("sampling variance", myStratification, mySamplingPattern, myData["observation"])
estimate("standard error", myStratification, mySamplingPattern, myData["observation"])
estimate("spatial variance", myStratification, mySamplingPattern, myData["observation"])
estimate("scdf", myStratification, mySamplingPattern, myData["observation"])
}