xgrsr.crit {spc} | R Documentation |
Compute alarm thresholds for Shiryaev-Roberts schemes
Description
Computation of the alarm thresholds (alarm limits) for Shiryaev-Roberts schemes monitoring normal mean.
Usage
xgrsr.crit(k, L0, mu0 = 0, zr = 0, hs = NULL, sided = "one", MPT = FALSE, r = 30)
Arguments
k |
reference value of the Shiryaev-Roberts scheme. |
L0 |
in-control ARL. |
mu0 |
in-control mean. |
zr |
reflection border to enable the numerical algorithms used here. |
hs |
so-called headstart (enables fast initial response). If |
sided |
distinguishes between one- and two-sided schemes by choosing
|
MPT |
switch between the old implementation ( |
r |
number of quadrature nodes, dimension of the resulting linear
equation system is equal to |
Details
xgrsr.crit
determines the alarm threshold (alarm limit)
for given in-control ARL L0
by applying secant rule and using xgrsr.arl()
.
Value
Returns a single value which resembles the alarm limit g
.
Author(s)
Sven Knoth
References
G. Moustakides, A. Polunchenko, A. Tartakovsky (2009), Numerical comparison of CUSUM and Shiryaev-Roberts procedures for detecting changes in distributions, Communications in Statistics: Theory and Methods 38, 3225-3239.r.
See Also
xgrsr.arl
for zero-state ARL computation.
Examples
## Table 4 from Moustakides et al. (2009)
## original values are
# gamma/L0 A/exp(g)
# 50 28.02
# 100 56.04
# 500 280.19
# 1000 560.37
# 5000 2801.75
# 10000 5603.7
theta <- 1
zr <- -6
r <- 100
Lxgrsr.crit <- Vectorize("xgrsr.crit", "L0")
L0s <- c(50, 100, 500, 1000, 5000, 10000)
gs <- Lxgrsr.crit(theta/2, L0s, zr=zr, r=r)
data.frame(L0s, gs, A=round(exp(gs), digits=2))