xewma.crit {spc} | R Documentation |
Compute critical values of EWMA control charts
Description
Computation of the critical values (similar to alarm limits) for different types of EWMA control charts monitoring normal mean.
Usage
xewma.crit(l,L0,mu0=0,zr=0,hs=0,sided="one",limits="fix",r=40,c0=NULL,nmax=10000)
Arguments
l |
smoothing parameter lambda of the EWMA control chart. |
L0 |
in-control ARL. |
mu0 |
in-control mean. |
zr |
reflection border for the one-sided chart. |
hs |
so-called headstart (enables fast initial response). |
sided |
distinguishes between one- and two-sided
two-sided EWMA control chart by choosing |
limits |
distinguishes between different control limits behavior. |
r |
number of quadrature nodes, dimension of the resulting linear
equation system is equal to |
c0 |
starting value for iteration rule. |
nmax |
maximum number of individual control limit factors for |
Details
xewma.crit
determines the critical values (similar to alarm limits)
for given in-control ARL L0
by applying secant rule and using xewma.arl()
.
Value
Returns a single value which resembles the critical value
c
.
Author(s)
Sven Knoth
References
S. V. Crowder (1989), Design of exponentially weighted moving average schemes, Journal of Quality Technology 21, 155-162.
See Also
xewma.arl
for zero-state ARL computation.
Examples
l <- .1
incontrolARL <- c(500,5000,50000)
sapply(incontrolARL,l=l,sided="two",xewma.crit,r=35) # accuracy with 35 nodes
sapply(incontrolARL,l=l,sided="two",xewma.crit) # accuracy with 40 nodes
sapply(incontrolARL,l=l,sided="two",xewma.crit,r=50) # accuracy with 50 nodes
## Crowder (1989)
## two-sided EWMA control charts with fixed limits
l <- c(.05,.1,.15,.2,.25)
L0 <- 250
round(sapply(l,L0=L0,sided="two",xewma.crit),digits=2)
## original values are 2.32, 2.55, 2.65, 2.72, and 2.76.