xewma.ad {spc} | R Documentation |
Compute steady-state ARLs of EWMA control charts
Description
Computation of the steady-state Average Run Length (ARL) for different types of EWMA control charts monitoring normal mean.
Usage
xewma.ad(l, c, mu1, mu0=0, zr=0, z0=0, sided="one", limits="fix",
steady.state.mode="conditional", r=40)
Arguments
l |
smoothing parameter lambda of the EWMA control chart. |
c |
critical value (similar to alarm limit) of the EWMA control chart. |
mu1 |
out-of-control mean. |
mu0 |
in-control mean. |
zr |
reflection border for the one-sided chart. |
z0 |
restarting value of the EWMA sequence in case of a false alarm in
|
sided |
distinguishes between one- and two-sided two-sided EWMA control
chart by choosing |
limits |
distinguishes between different control limits behavior. |
steady.state.mode |
distinguishes between two steady-state modes – conditional and cyclical. |
r |
number of quadrature nodes, dimension of the resulting linear
equation system is equal to |
Details
xewma.ad
determines the steady-state Average Run Length (ARL)
by numerically solving the related ARL integral equation by means
of the Nystroem method based on Gauss-Legendre quadrature
and using the power method for deriving the largest in magnitude
eigenvalue and the related left eigenfunction.
Value
Returns a single value which resembles the steady-state ARL.
Author(s)
Sven Knoth
References
R. B. Crosier (1986), A new two-sided cumulative quality control scheme, Technometrics 28, 187-194.
S. V. Crowder (1987), A simple method for studying run-length distributions of exponentially weighted moving average charts, Technometrics 29, 401-407.
J. M. Lucas and M. S. Saccucci (1990), Exponentially weighted moving average control schemes: Properties and enhancements, Technometrics 32, 1-12.
See Also
xewma.arl
for zero-state ARL computation and
xcusum.ad
for the steady-state ARL of CUSUM control charts.
Examples
## comparison of zero-state (= worst case ) and steady-state performance
## for two-sided EWMA control charts
l <- .1
c <- xewma.crit(l,500,sided="two")
mu <- c(0,.5,1,1.5,2)
arl <- sapply(mu,l=l,c=c,sided="two",xewma.arl)
ad <- sapply(mu,l=l,c=c,sided="two",xewma.ad)
round(cbind(mu,arl,ad),digits=2)
## Lucas/Saccucci (1990)
## two-sided EWMA
## with fixed limits
l1 <- .5
l2 <- .03
c1 <- 3.071
c2 <- 2.437
mu <- c(0,.25,.5,.75,1,1.5,2,2.5,3,3.5,4,5)
ad1 <- sapply(mu,l=l1,c=c1,sided="two",xewma.ad)
ad2 <- sapply(mu,l=l2,c=c2,sided="two",xewma.ad)
round(cbind(mu,ad1,ad2),digits=2)
## original results are (in Table 3)
## 0.00 499. 480.
## 0.25 254. 74.1
## 0.50 88.4 28.6
## 0.75 35.7 17.3
## 1.00 17.3 12.5
## 1.50 6.44 8.00
## 2.00 3.58 5.95
## 2.50 2.47 4.78
## 3.00 1.91 4.02
## 3.50 1.58 3.49
## 4.00 1.36 3.09
## 5.00 1.10 2.55