xDgrsr.arl {spc} | R Documentation |
Compute ARLs of Shiryaev-Roberts schemes under drift
Description
Computation of the (zero-state and other) Average Run Length (ARL) under drift for Shiryaev-Roberts schemes monitoring normal mean.
Usage
xDgrsr.arl(k, g, delta, zr = 0, hs = NULL, sided = "one", m = NULL,
mode = "Gan", q = 1, r = 30, with0 = FALSE)
Arguments
k |
reference value of the Shiryaev-Roberts scheme. |
g |
control limit (alarm threshold) of Shiryaev-Roberts scheme. |
delta |
true drift parameter. |
zr |
reflection border for the one-sided chart. |
hs |
so-called headstart (enables fast initial response). |
sided |
distinguishes between one- and two-sided
Shiryaev-Roberts schemes
by choosing |
m |
parameter used if |
q |
change point position. For |
mode |
decide whether Gan's or Knoth's approach is used. Use
|
r |
number of quadrature nodes, dimension of the resulting linear
equation system is equal to |
with0 |
defines whether the first observation used for the RL calculation
follows already 1*delta or still 0*delta.
With |
Details
Based on Gan (1991) or Knoth (2003), the ARL is calculated for Shiryaev-Roberts schemes under drift. In case of Gan's framework, the usual ARL function with mu=m*delta is determined and recursively via m-1, m-2, ... 1 (or 0) the drift ARL determined. The framework of Knoth allows to calculate ARLs for varying parameters, such as control limits and distributional parameters. For details see the cited papers.
Value
Returns a single value which resembles the ARL.
Author(s)
Sven Knoth
References
F. F. Gan (1991), EWMA control chart under linear drift, J. Stat. Comput. Simulation 38, 181-200.
S. Knoth (2003), EWMA schemes with non-homogeneous transition kernels, Sequential Analysis 22, 241-255.
S. Knoth (2012), More on Control Charting under Drift, in: Frontiers in Statistical Quality Control 10, H.-J. Lenz, W. Schmid and P.-T. Wilrich (Eds.), Physica Verlag, Heidelberg, Germany, 53-68.
C. Zou, Y. Liu and Z. Wang (2009), Comparisons of control schemes for monitoring the means of processes subject to drifts, Metrika 70, 141-163.
See Also
xewma.arl
and xewma.ad
for zero-state and
steady-state ARL computation of EWMA control charts
for the classical step change model.
Examples
## Not run:
## Monte Carlo example with 10^8 replicates
# delta arl s.e.
# 0.0001 381.8240 0.0304
# 0.0005 238.4630 0.0148
# 0.001 177.4061 0.0097
# 0.002 125.9055 0.0061
# 0.005 75.7574 0.0031
# 0.01 50.2203 0.0018
# 0.02 32.9458 0.0011
# 0.05 18.9213 0.0005
# 0.1 12.6054 0.0003
# 0.5 5.2157 0.0001
# 1 3.6537 0.0001
# 3 2.0289 0.0000
k <- .5
L0 <- 500
zr <- -7
r <- 50
g <- xgrsr.crit(k, L0, zr=zr, r=r)
DxDgrsr.arl <- Vectorize(xDgrsr.arl, "delta")
deltas <- c(0.0001, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.5, 1, 3)
arls <- round(DxDgrsr.arl(k, g, deltas, zr=zr, r=r), digits=4)
data.frame(deltas, arls)
## End(Not run)