xDewma.arl {spc} | R Documentation |
Compute ARLs of EWMA control charts under drift
Description
Computation of the (zero-state and other) Average Run Length (ARL) under drift for different types of EWMA control charts monitoring normal mean.
Usage
xDewma.arl(l, c, delta, zr = 0, hs = 0, sided = "one", limits = "fix",
mode = "Gan", m = NULL, q = 1, r = 40, with0 = FALSE)
Arguments
l |
smoothing parameter lambda of the EWMA control chart. |
c |
critical value (similar to alarm limit) of the EWMA control chart. |
delta |
true drift parameter. |
zr |
reflection border for the one-sided chart. |
hs |
so-called headstart (enables fast initial response). |
sided |
distinguish between one- and two-sided EWMA control chart
by choosing |
limits |
distinguishes between different control limits behavior. |
mode |
decide whether Gan's or Knoth's approach is used. Use
|
m |
parameter used if |
q |
change point position. For |
r |
number of quadrature nodes, dimension of the resulting linear
equation system is equal to |
with0 |
defines whether the first observation used for the RL calculation
follows already 1*delta or still 0*delta.
With |
Details
Based on Gan (1991) or Knoth (2003), the ARL is calculated for EWMA control charts under drift. In case of Gan's framework, the usual ARL function with mu=m*delta is determined and recursively via m-1, m-2, ... 1 (or 0) the drift ARL determined. The framework of Knoth allows to calculate ARLs for varying parameters, such as control limits and distributional parameters. For details see the cited papers.
Value
Returns a single value which resembles the ARL.
Author(s)
Sven Knoth
References
F. F. Gan (1991), EWMA control chart under linear drift, J. Stat. Comput. Simulation 38, 181-200.
L. A. Aerne, C. W. Champ and S. E. Rigdon (1991), Evaluation of control charts under linear trend, Commun. Stat., Theory Methods 20, 3341-3349.
S. Knoth (2003), EWMA schemes with non-homogeneous transition kernels, Sequential Analysis 22, 241-255.
H. M. Fahmy and E. A. Elsayed (2006), Detection of linear trends in process mean, International Journal of Production Research 44, 487-504.
S. Knoth (2012), More on Control Charting under Drift, in: Frontiers in Statistical Quality Control 10, H.-J. Lenz, W. Schmid and P.-T. Wilrich (Eds.), Physica Verlag, Heidelberg, Germany, 53-68.
C. Zou, Y. Liu and Z. Wang (2009), Comparisons of control schemes for monitoring the means of processes subject to drifts, Metrika 70, 141-163.
See Also
xewma.arl
and xewma.ad
for zero-state and
steady-state ARL computation of EWMA control charts
for the classical step change model.
Examples
## Not run:
DxDewma.arl <- Vectorize(xDewma.arl, "delta")
## Gan (1991)
## Table 1
## original values are
# delta arlE1 arlE2 arlE3
# 0 500 500 500
# 0.0001 482 460 424
# 0.0010 289 231 185
# 0.0020 210 162 129
# 0.0050 126 94.6 77.9
# 0.0100 81.7 61.3 52.7
# 0.0500 27.5 21.8 21.9
# 0.1000 17.0 14.2 15.3
# 1.0000 4.09 4.28 5.25
# 3.0000 2.60 2.90 3.43
#
lambda1 <- 0.676
lambda2 <- 0.242
lambda3 <- 0.047
h1 <- 2.204/sqrt(lambda1/(2-lambda1))
h2 <- 1.111/sqrt(lambda2/(2-lambda2))
h3 <- 0.403/sqrt(lambda3/(2-lambda3))
deltas <- c(.0001, .001, .002, .005, .01, .05, .1, 1, 3)
arlE10 <- round(xewma.arl(lambda1, h1, 0, sided="two"), digits=2)
arlE1 <- c(arlE10, round(DxDewma.arl(lambda1, h1, deltas, sided="two", with0=TRUE),
digits=2))
arlE20 <- round(xewma.arl(lambda2, h2, 0, sided="two"), digits=2)
arlE2 <- c(arlE20, round(DxDewma.arl(lambda2, h2, deltas, sided="two", with0=TRUE),
digits=2))
arlE30 <- round(xewma.arl(lambda3, h3, 0, sided="two"), digits=2)
arlE3 <- c(arlE30, round(DxDewma.arl(lambda3, h3, deltas, sided="two", with0=TRUE),
digits=2))
data.frame(delta=c(0, deltas), arlE1, arlE2, arlE3)
## do the same with more digits for the alarm threshold
L0 <- 500
h1 <- xewma.crit(lambda1, L0, sided="two")
h2 <- xewma.crit(lambda2, L0, sided="two")
h3 <- xewma.crit(lambda3, L0, sided="two")
lambdas <- c(lambda1, lambda2, lambda3)
hs <- c(h1, h2, h3) * sqrt(lambdas/(2-lambdas))
hs
# compare with Gan's values 2.204, 1.111, 0.403
round(hs, digits=3)
arlE10 <- round(xewma.arl(lambda1, h1, 0, sided="two"), digits=2)
arlE1 <- c(arlE10, round(DxDewma.arl(lambda1, h1, deltas, sided="two", with0=TRUE),
digits=2))
arlE20 <- round(xewma.arl(lambda2, h2, 0, sided="two"), digits=2)
arlE2 <- c(arlE20, round(DxDewma.arl(lambda2, h2, deltas, sided="two", with0=TRUE),
digits=2))
arlE30 <- round(xewma.arl(lambda3, h3, 0, sided="two"), digits=2)
arlE3 <- c(arlE30, round(DxDewma.arl(lambda3, h3, deltas, sided="two", with0=TRUE),
digits=2))
data.frame(delta=c(0, deltas), arlE1, arlE2, arlE3)
## Aerne et al. (1991) -- two-sided EWMA
## Table I (continued)
## original numbers are
# delta arlE1 arlE2 arlE3
# 0.000000 465.0 465.0 465.0
# 0.005623 77.01 85.93 102.68
# 0.007499 64.61 71.78 85.74
# 0.010000 54.20 59.74 71.22
# 0.013335 45.20 49.58 58.90
# 0.017783 37.76 41.06 48.54
# 0.023714 31.54 33.95 39.87
# 0.031623 26.36 28.06 32.68
# 0.042170 22.06 23.19 26.73
# 0.056234 18.49 19.17 21.84
# 0.074989 15.53 15.87 17.83
# 0.100000 13.07 13.16 14.55
# 0.133352 11.03 10.94 11.88
# 0.177828 9.33 9.12 9.71
# 0.237137 7.91 7.62 7.95
# 0.316228 6.72 6.39 6.52
# 0.421697 5.72 5.38 5.37
# 0.562341 4.88 4.54 4.44
# 0.749894 4.18 3.84 3.68
# 1.000000 3.58 3.27 3.07
#
lambda1 <- .133
lambda2 <- .25
lambda3 <- .5
cE1 <- 2.856
cE2 <- 2.974
cE3 <- 3.049
deltas <- 10^(-(18:0)/8)
arlE10 <- round(xewma.arl(lambda1, cE1, 0, sided="two"), digits=2)
arlE1 <- c(arlE10, round(DxDewma.arl(lambda1, cE1, deltas, sided="two"), digits=2))
arlE20 <- round(xewma.arl(lambda2, cE2, 0, sided="two"), digits=2)
arlE2 <- c(arlE20, round(DxDewma.arl(lambda2, cE2, deltas, sided="two"), digits=2))
arlE30 <- round(xewma.arl(lambda3, cE3, 0, sided="two"), digits=2)
arlE3 <- c(arlE30, round(DxDewma.arl(lambda3, cE3, deltas, sided="two"), digits=2))
data.frame(delta=c(0, round(deltas, digits=6)), arlE1, arlE2, arlE3)
## Fahmy/Elsayed (2006) -- two-sided EWMA
## Table 4 (Monte Carlo results, 10^4 replicates, change point at t=51!)
## original numbers are
# delta arl s.e.
# 0.00 365.749 3.598
# 0.10 12.971 0.029
# 0.25 7.738 0.015
# 0.50 5.312 0.009
# 0.75 4.279 0.007
# 1.00 3.680 0.006
# 1.25 3.271 0.006
# 1.50 2.979 0.005
# 1.75 2.782 0.004
# 2.00 2.598 0.005
#
lambda <- 0.1
cE <- 2.7
deltas <- c(.1, (1:8)/4)
arlE1 <- c(round(xewma.arl(lambda, cE, 0, sided="two"), digits=3),
round(DxDewma.arl(lambda, cE, deltas, sided="two"), digits=3))
arlE51 <- c(round(xewma.arl(lambda, cE, 0, sided="two", q=51)[51], digits=3),
round(DxDewma.arl(lambda, cE, deltas, sided="two", mode="Knoth", q=51),
digits=3))
data.frame(delta=c(0, deltas), arlE1, arlE51)
## additional Monte Carlo results with 10^8 replicates
# delta arl.q=1 s.e. arl.q=51 s.e.
# 0.00 368.910 0.036 361.714 0.038
# 0.10 12.986 0.000 12.781 0.000
# 0.25 7.758 0.000 7.637 0.000
# 0.50 5.318 0.000 5.235 0.000
# 0.75 4.285 0.000 4.218 0.000
# 1.00 3.688 0.000 3.628 0.000
# 1.25 3.274 0.000 3.233 0.000
# 1.50 2.993 0.000 2.942 0.000
# 1.75 2.808 0.000 2.723 0.000
# 2.00 2.616 0.000 2.554 0.000
## Zou et al. (2009) -- one-sided EWMA
## Table 1
## original values are
# delta arl1 arl2 arl3
# 0 ~ 1730
# 0.0005 317 377 440
# 0.001 215 253 297
# 0.005 83.6 92.6 106
# 0.01 55.6 58.8 66.1
# 0.05 22.6 21.1 22.0
# 0.1 15.5 13.9 13.8
# 0.5 6.65 5.56 5.09
# 1.0 4.67 3.83 3.43
# 2.0 3.21 2.74 2.32
# 3.0 2.86 2.06 1.98
# 4.0 2.14 2.00 1.83
l1 <- 0.03479
l2 <- 0.11125
l3 <- 0.23052
c1 <- 2.711
c2 <- 3.033
c3 <- 3.161
zr <- -6
r <- 50
deltas <- c(0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1:4)
arl1 <- c(round(xewma.arl(l1, c1, 0, zr=zr, r=r), digits=2),
round(DxDewma.arl(l1, c1, deltas, zr=zr, r=r), digits=2))
arl2 <- c(round(xewma.arl(l2, c2, 0, zr=zr), digits=2),
round(DxDewma.arl(l2, c2, deltas, zr=zr, r=r), digits=2))
arl3 <- c(round(xewma.arl(l3, c3, 0, zr=zr, r=r), digits=2),
round(DxDewma.arl(l3, c3, deltas, zr=zr, r=r), digits=2))
data.frame(delta=c(0, deltas), arl1, arl2, arl3)
## End(Not run)