sewma.crit {spc} | R Documentation |
Compute critical values of EWMA control charts (variance charts)
Description
Computation of the critical values (similar to alarm limits)
for different types of EWMA control charts (based on the sample variance
S^2
) monitoring normal variance.
Usage
sewma.crit(l,L0,df,sigma0=1,cl=NULL,cu=NULL,hs=NULL,s2.on=TRUE,
sided="upper",mode="fixed",ur=4,r=40,qm=30)
Arguments
l |
smoothing parameter lambda of the EWMA control chart. |
L0 |
in-control ARL. |
df |
actual degrees of freedom, corresponds to subgroup size (for known mean it is equal to the subgroup size, for unknown mean it is equal to subgroup size minus one. |
sigma0 |
in-control standard deviation. |
cl |
deployed for |
cu |
for two-sided ( |
hs |
so-called headstart (enables fast initial response); the default ( |
s2.on |
distinguishes between |
sided |
distinguishes between one- and two-sided
two-sided EWMA- |
mode |
only deployed for |
ur |
truncation of lower chart for |
r |
dimension of the resulting linear equation system (highest order of the collocation polynomials). |
qm |
number of quadrature nodes for calculating the collocation definite integrals. |
Details
sewma.crit
determines the critical values (similar to alarm limits)
for given in-control ARL L0
by applying secant rule and using sewma.arl()
.
In case of sided
="two"
and mode
="unbiased"
a two-dimensional secant rule is applied that also ensures that the
maximum of the ARL function for given standard deviation is attained
at sigma0
. See Knoth (2010) and the related example.
Value
Returns the lower and upper control limit cl
and cu
.
Author(s)
Sven Knoth
References
H.-J. Mittag and D. Stemann and B. Tewes (1998), EWMA-Karten zur \"Uberwachung der Streuung von Qualit\"atsmerkmalen, Allgemeines Statistisches Archiv 82, 327-338,
C. A. Acosta-Mej\'ia and J. J. Pignatiello Jr. and B. V. Rao (1999), A comparison of control charting procedures for monitoring process dispersion, IIE Transactions 31, 569-579.
S. Knoth (2005),
Accurate ARL computation for EWMA-S^2
control charts,
Statistics and Computing 15, 341-352.
S. Knoth (2006a),
Computation of the ARL for CUSUM-S^2
schemes,
Computational Statistics & Data Analysis 51, 499-512.
S. Knoth (2006b), The art of evaluating monitoring schemes – how to measure the performance of control charts? in Frontiers in Statistical Quality Control 8, H.-J. Lenz and P.-T. Wilrich (Eds.), Physica Verlag, Heidelberg, Germany, 74-99.
S. Knoth (2010), Control Charting Normal Variance – Reflections, Curiosities, and Recommendations, in Frontiers in Statistical Quality Control 9, H.-J. Lenz and P.-T. Wilrich (Eds.), Physica Verlag, Heidelberg, Germany, 3-18.
See Also
sewma.arl
for calculation of ARL of variance charts.
Examples
## Mittag et al. (1998)
## compare their upper critical value 2.91 that
## leads to the upper control limit via the formula shown below
## (for the usual upper EWMA \eqn{S^2}{S^2}).
## See Knoth (2006b) for a discussion of this EWMA setup and it's evaluation.
l <- 0.18
L0 <- 250
df <- 4
limits <- sewma.crit(l, L0, df)
limits["cu"]
limits.cu.mittag_et_al <- 1 + sqrt(l/(2-l))*sqrt(2/df)*2.91
limits.cu.mittag_et_al
## Knoth (2005)
## reproduce the critical value given in Figure 2 (c=1.661865) for
## upper EWMA \eqn{S^2}{S^2} with df=1
l <- 0.025
L0 <- 250
df <- 1
limits <- sewma.crit(l, L0, df)
cv.Fig2 <- (limits["cu"]-1)/( sqrt(l/(2-l))*sqrt(2/df) )
cv.Fig2
## the small difference (sixth digit after decimal point) stems from
## tighter criterion in the secant rule implemented in the R package.
## demo of unbiased ARL curves
## Deploy, please, not matrix dimensions smaller than 50 -- for the
## sake of accuracy, the value 80 was used.
## Additionally, this example needs between 1 and 2 minutes on a 1.6 Ghz box.
## Not run:
l <- 0.1
L0 <- 500
df <- 4
limits <- sewma.crit(l, L0, df, sided="two", mode="unbiased", r=80)
SEWMA.arl <- Vectorize(sewma.arl, "sigma")
SEWMA.ARL <- function(sigma)
SEWMA.arl(l, limits[1], limits[2], sigma, df, sided="two", r=80)
layout(matrix(1:2, nrow=1))
curve(SEWMA.ARL, .75, 1.25, log="y")
curve(SEWMA.ARL, .95, 1.05, log="y")
## End(Not run)
# the above stuff needs about 1 minute
## control limits for upper and lower EWMA charts with reflecting barriers
## (reflection at in-control level sigma0 = 1)
## examples from Knoth (2006a), Tables 4 and 5
## Not run:
## upper chart with reflection at sigma0=1 in Table 4: c = 2.4831
l <- 0.15
L0 <- 100
df <- 4
limits <- sewma.crit(l, L0, df, cl=1, sided="Rupper", r=100)
cv.Tab4 <- (limits["cu"]-1)/( sqrt(l/(2-l))*sqrt(2/df) )
cv.Tab4
## lower chart with reflection at sigma0=1 in Table 5: c = 2.0613
l <- 0.115
L0 <- 200
df <- 5
limits <- sewma.crit(l, L0, df, cu=1, sided="Rlower", r=100)
cv.Tab5 <- -(limits["cl"]-1)/( sqrt(l/(2-l))*sqrt(2/df) )
cv.Tab5
## End(Not run)