mewma.psi {spc} | R Documentation |
Compute steady-state density of the MEWMA statistic
Description
Computation of the (zero-state) steady-state density function of the statistic deployed in multivariate exponentially weighted moving average (MEWMA) charts monitoring multivariate normal mean.
Usage
mewma.psi(l, cE, p, type="cond", hs=0, r=20)
Arguments
l |
smoothing parameter lambda of the MEWMA control chart. |
cE |
alarm threshold of the MEWMA control chart. |
p |
dimension of multivariate normal distribution. |
type |
switch between |
hs |
the re-starting point for the cyclical steady-state framework. |
r |
number of quadrature nodes. |
Details
Basically, ideas from Knoth (2017, MEWMA numerics) and Knoth (2016, steady-state ARL concepts) are merged. More details will follow.
Value
Returns a function.
Author(s)
Sven Knoth
References
Sven Knoth (2016), The Case Against the Use of Synthetic Control Charts, Journal of Quality Technology 48(2), 178-195.
Sven Knoth (2017), ARL Numerics for MEWMA Charts, Journal of Quality Technology 49(1), 78-89.
Sven Knoth (2018), The Steady-State Behavior of Multivariate Exponentially Weighted Moving Average Control Charts, Sequential Analysis 37(4), 511-529.
See Also
mewma.arl
for calculating the in-control ARL of MEWMA.
Examples
lambda <- 0.1
L0 <- 200
p <- 3
h4 <- mewma.crit(lambda, L0, p)
x_ <- seq(0, h4*lambda/(2-lambda), by=0.002)
psi <- mewma.psi(lambda, h4, p)
psi_ <- psi(x_)
# plot(x_, psi_, type="l", xlab="x", ylab=expression(psi(x)), xlim=c(0,1.2))
# cf. to Figure 1 in Knoth (2018), p. 514, p=3