mewma.crit {spc} | R Documentation |
Compute alarm threshold of MEWMA control charts
Description
Computation of the alarm threshold for multivariate exponentially weighted moving average (MEWMA) charts monitoring multivariate normal mean.
Usage
mewma.crit(l, L0, p, hs=0, r=20)
Arguments
l |
smoothing parameter lambda of the MEWMA control chart. |
L0 |
in-control ARL. |
p |
dimension of multivariate normal distribution. |
hs |
so-called headstart (enables fast initial response) – must be non-negative. |
r |
number of quadrature nodes – dimension of the resulting linear equation system. |
Details
mewma.crit
determines the alarm threshold of for given in-control ARL L0
by applying secant rule and using mewma.arl()
with ntype="gl2"
.
Value
Returns a single value which resembles the critical value c
.
Author(s)
Sven Knoth
References
Sven Knoth (2017), ARL Numerics for MEWMA Charts, Journal of Quality Technology 49(1), 78-89.
Steven E. Rigdon (1995), An integral equation for the in-control average run length of a multivariate exponentially weighted moving average control chart, J. Stat. Comput. Simulation 52(4), 351-365.
See Also
mewma.arl
for zero-state ARL computation.
Examples
# Rigdon (1995), p. 358, Tab. 1
p <- 4
L0 <- 500
r <- .25
h4 <- mewma.crit(r, L0, p)
h4
## original value is 16.38.
# Knoth (2017), p. 82, Tab. 2
p <- 3
L0 <- 1e3
lambda <- c(0.25, 0.2, 0.15, 0.1, 0.05)
h4 <- rep(NA, length(lambda) )
for ( i in 1:length(lambda) ) h4[i] <- mewma.crit(lambda[i], L0, p, r=20)
round(h4, digits=2)
## original values are
## 15.82 15.62 15.31 14.76 13.60