kernel.moment {spatstat.univar} | R Documentation |
Incomplete Moment of Smoothing Kernel
Description
Computes the complete or incomplete th moment of a
smoothing kernel.
Usage
kernel.moment(m, r, kernel = "gaussian", mean=0, sd=1/kernel.factor(kernel))
Arguments
m |
Exponent (order of moment). An integer. |
r |
Upper limit of integration for the incomplete moment.
A numeric value or numeric vector.
Set |
kernel |
String name of the kernel.
Options are
|
mean , sd |
Optional numerical values giving the mean and standard deviation of the kernel. |
Details
Kernel estimation of a probability density in one dimension
is performed by density.default
using a kernel function selected from the list above.
For more information about these kernels,
see density.default
.
The function kernel.moment
computes the integral
where is the selected kernel,
is the upper limit of
integration, and
is the exponent or order.
Note that, if mean
and sd
are not specified, the
calculations assume that is the standard form of the kernel,
which has support
and
standard deviation
where
c = kernel.factor(kernel)
.
The code uses the explicit analytic expressions when
m = 0, 1, 2
and numerical integration otherwise.
Value
A single number, or a numeric vector of the same length as r
.
Author(s)
Adrian Baddeley Adrian.Baddeley@curtin.edu.au and Martin Hazelton Martin.Hazelton@otago.ac.nz.
See Also
density.default
,
dkernel
,
kernel.factor
,
kernel.squint
Examples
kernel.moment(1, 0.1, "epa")
curve(kernel.moment(2, x, "epa"), from=-1, to=1)