rPSNCP {spatstat.random} | R Documentation |
Simulate Product Shot-noise Cox Process
Description
Generate a random multitype point pattern, a realisation of the product shot-noise Cox process.
Usage
rPSNCP(lambda=rep(100, 4), kappa=rep(25, 4), omega=rep(0.03, 4),
alpha=matrix(runif(16, -1, 3), nrow=4, ncol=4),
kernels=NULL, nu.ker=NULL, win=owin(), nsim=1, drop=TRUE,
...,
cnames=NULL, epsth=0.001)
Arguments
lambda |
List of intensities of component processes. Either a
numeric vector determining the constant (homogeneous) intensities
or a list of pixel images (objects of class |
kappa |
Numeric vector of intensities of the Poisson process of cluster centres
for component processes. Must have the same size as |
omega |
Numeric vector of bandwidths of cluster dispersal kernels
for component processes. Must have the same size as |
alpha |
Matrix of interaction parameters. Square numeric matrix with the same
number of rows and columns as the length of |
kernels |
Vector of character string determining the cluster dispersal kernels
of component processes. Implemented kernels are Gaussian
kernel ( |
nu.ker |
Numeric vector of bandwidths of shape parameters for Variance-Gamma kernels. |
win |
Window in which to simulate the pattern.
An object of class |
nsim |
Number of simulated realisations to be generated. |
cnames |
Optional vector of character strings giving the names of the component processes. |
... |
Optional arguments passed to |
epsth |
Numerical threshold to determine the maximum interaction range for cluster kernels. |
drop |
Logical. If |
Details
This function generates a realisation of a product shot-noise Cox
process (PSNCP). This is a multitype (multivariate) Cox point process
in which each element of the multivariate random intensity
of the process is obtained by
where is the intensity
of component
of the process,
is the shot-noise random field for component and
is a product field controlling impulses from the parent Poisson process
with constant intensity
of
component process
on
.
Here
is an isotropic kernel (probability
density) function on
with bandwidth
and
shape parameter
,
and
is the interaction parameter.
Value
A point pattern (an object of class "ppp"
) if nsim=1
, or a
list of point patterns if nsim > 1
. Each point pattern is
multitype (it carries a vector of marks which is a factor).
Author(s)
Abdollah Jalilian. Modified by Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner rolfturner@posteo.net and Ege Rubak rubak@math.aau.dk.
References
Jalilian, A., Guan, Y., Mateu, J. and Waagepetersen, R. (2015) Multivariate product-shot-noise Cox point process models. Biometrics 71(4), 1022–1033.
See Also
rmpoispp
,
rThomas
,
rVarGamma
,
rCauchy
,
rNeymanScott
Examples
online <- interactive()
# Example 1: homogeneous components
lambda <- c(250, 300, 180, 400)
kappa <- c(30, 25, 20, 25)
omega <- c(0.02, 0.025, 0.03, 0.02)
alpha <- matrix(runif(16, -1, 1), nrow=4, ncol=4)
if(!online) {
lambda <- lambda[1:2]/10
kappa <- kappa[1:2]
omega <- omega[1:2]
alpha <- alpha[1:2, 1:2]
}
X <- rPSNCP(lambda, kappa, omega, alpha)
if(online) {
plot(X)
plot(split(X))
}
#Example 2: inhomogeneous components
z1 <- scaletointerval.im(bei.extra$elev, from=0, to=1)
z2 <- scaletointerval.im(bei.extra$grad, from=0, to=1)
if(!online) {
## reduce resolution to reduce check time
z1 <- as.im(z1, dimyx=c(40,80))
z2 <- as.im(z2, dimyx=c(40,80))
}
lambda <- list(
exp(-8 + 1.5 * z1 + 0.5 * z2),
exp(-7.25 + 1 * z1 - 1.5 * z2),
exp(-6 - 1.5 * z1 + 0.5 * z2),
exp(-7.5 + 2 * z1 - 3 * z2))
kappa <- c(35, 30, 20, 25) / (1000 * 500)
omega <- c(15, 35, 40, 25)
alpha <- matrix(runif(16, -1, 1), nrow=4, ncol=4)
if(!online) {
lambda <- lapply(lambda[1:2], "/", e2=10)
kappa <- kappa[1:2]
omega <- omega[1:2]
alpha <- alpha[1:2, 1:2]
} else {
sapply(lambda, integral)
}
X <- rPSNCP(lambda, kappa, omega, alpha, win = Window(bei), dimyx=dim(z1))
if(online) {
plot(X)
plot(split(X), cex=0.5)
}