rppm {spatstat.model} | R Documentation |
Recursively Partitioned Point Process Model
Description
Fits a recursive partition model to point pattern data.
Usage
rppm(..., rpargs=list())
Arguments
... |
Arguments passed to |
rpargs |
Optional list of arguments passed to |
Details
This function attempts to find a simple rule for predicting low and high intensity regions of points in a point pattern, using explanatory covariates.
The arguments ...
specify the point pattern data
and explanatory covariates in the same way as they would be
in the function ppm
.
The recursive partitioning algorithm rpart
is then used to find a partitioning rule.
Value
An object of class "rppm"
. There are methods
for print
, plot
, fitted
, predict
and
prune
for this class.
Author(s)
Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner rolfturner@posteo.net and Ege Rubak rubak@math.aau.dk.
References
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984) Classification and Regression Trees. Wadsworth.
See Also
plot.rppm
,
predict.rppm
,
update.rppm
,
prune.rppm
.
Examples
# New Zealand trees data: trees planted along border
# Use covariates 'x', 'y'
nzfit <- rppm(nztrees ~ x + y)
nzfit
prune(nzfit, cp=0.035)
# Murchison gold data: numeric and logical covariates
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
#
mfit <- rppm(gold ~ dfault + greenstone, data=mur)
mfit
# Gorillas data: factor covariates
# (symbol '.' indicates 'all variables')
gfit <- rppm(unmark(gorillas) ~ . , data=gorillas.extra)
gfit