prune.rppm {spatstat.model} | R Documentation |
Prune a Recursively Partitioned Point Process Model
Description
Given a model which has been fitted to point pattern data by recursive partitioning, apply pruning to reduce the complexity of the partition tree.
Usage
## S3 method for class 'rppm'
prune(tree, ...)
Arguments
tree |
Fitted point process model of class |
... |
Arguments passed to |
Details
This is a method for the generic function prune
for the class "rppm"
. An object of this class is a
point process model, fitted to point pattern data by
recursive partitioning, by the function rppm
.
The recursive partition tree will be pruned using
prune.rpart
. The result is another
object of class "rppm"
.
Value
Object of class "rppm"
.
Author(s)
Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner rolfturner@posteo.net and Ege Rubak rubak@math.aau.dk
See Also
rppm
,
plot.rppm
,
predict.rppm
.
Examples
# Murchison gold data
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
fit <- rppm(gold ~ dfault + greenstone, data=mur)
fit
prune(fit, cp=0.1)