| prune.rppm {spatstat.model} | R Documentation |
Prune a Recursively Partitioned Point Process Model
Description
Given a model which has been fitted to point pattern data by recursive partitioning, apply pruning to reduce the complexity of the partition tree.
Usage
## S3 method for class 'rppm'
prune(tree, ...)
Arguments
tree |
Fitted point process model of class |
... |
Arguments passed to |
Details
This is a method for the generic function prune
for the class "rppm". An object of this class is a
point process model, fitted to point pattern data by
recursive partitioning, by the function rppm.
The recursive partition tree will be pruned using
prune.rpart. The result is another
object of class "rppm".
Value
Object of class "rppm".
Author(s)
Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner rolfturner@posteo.net and Ege Rubak rubak@math.aau.dk
See Also
rppm,
plot.rppm,
predict.rppm.
Examples
# Murchison gold data
mur <- solapply(murchison, rescale, s=1000, unitname="km")
mur$dfault <- distfun(mur$faults)
fit <- rppm(gold ~ dfault + greenstone, data=mur)
fit
prune(fit, cp=0.1)