bw.loccit {spatstat.local} | R Documentation |
Cross Validated Bandwidth Selection for Locally Fitted Point Process Model
Description
Uses cross-validation to select a smoothing bandwidth for locally fitting a Cox or cluster point process model.
Usage
bw.loccit(..., use.fft=TRUE,
srange = NULL, ns = 9, sigma = NULL,
fftopt=list(),
verbose = TRUE)
Arguments
... |
Arguments passed to |
use.fft |
Logical value indicating whether to use a quick-and-dirty approximation based on a first order Taylor expansion. |
srange |
Range of values of the smoothing parameter |
ns |
Number of values of the smoothing parameter |
sigma |
Vector of values of the smoothing parameter to be searched. |
fftopt |
Developer use only. |
verbose |
Logical value indicating whether to display progress reports. |
Details
This function determines the optimal value of the smoothing
parameter sigma
to be used in a call to loccit
.
The function loccit
fits
a Cox or cluster point process model
to point pattern data by local composite likelihood.
The degree of local smoothing is controlled by a smoothing parameter
sigma
which is an argument to loccit
.
For each value of sigma
in a search interval,
the function bw.loccit
fits the model locally
and evaluates a cross-validation criterion. The optimal value of
sigma
is returned.
Value
A numerical value giving the selected bandwidth.
The result also belongs to the class "bw.optim"
which can be plotted.
Author(s)
Adrian Baddeley Adrian.Baddeley@curtin.edu.au.
References
Baddeley, A. (2017) Local composite likelihood for spatial point patterns. Spatial Statistics 22, 261–295. DOI: 10.1016/j.spasta.2017.03.001
Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC Press.
See Also
Examples
X <- redwood[owin(c(0,1), c(-1,-1/2))]
Ns <- if(interactive()) 16 else 2
b <- bw.loccit(X, ~1, "Thomas", srange=c(0.07, 0.14), ns=Ns)
b
plot(b)