density.lpp {spatstat.linnet} | R Documentation |
Kernel Estimate of Intensity on a Linear Network
Description
Estimates the intensity of a point process on a linear network by applying kernel smoothing to the point pattern data.
Usage
## S3 method for class 'lpp'
density(x, sigma=NULL, ...,
weights=NULL,
distance=c("path", "euclidean"),
continuous=TRUE,
kernel="gaussian")
## S3 method for class 'splitppx'
density(x, sigma=NULL, ...)
Arguments
x |
Point pattern on a linear network (object of class |
sigma |
Smoothing bandwidth (standard deviation of the kernel).
A single numerical value
in the same units as the spatial coordinates of |
... |
Additional arguments controlling the algorithm
and the spatial resolution of the result.
These arguments are passed either to
|
weights |
Optional. Numeric vector of weights associated with the
points of |
distance |
Character string (partially matched) specifying whether to use
a kernel based on paths in the network ( |
kernel |
Character string specifying the smoothing kernel.
See |
continuous |
Logical value indicating whether to compute the
“equal-split continuous” smoother ( |
Details
Kernel smoothing is applied to the points of x
using either a kernel based on path distances in the network,
or a two-dimensional kernel.
The result is a pixel image on the linear network (class
"linim"
) which can be plotted.
If
distance="path"
(the default) then the smoothing is performed using a kernel based on path distances in the network, as described in described in Okabe and Sugihara (2012) and McSwiggan et al (2016).-
If
continuous=TRUE
(the default), smoothing is performed using the “equal-split continuous” rule described in Section 9.2.3 of Okabe and Sugihara (2012). The resulting function is continuous on the linear network. -
If
continuous=FALSE
, smoothing is performed using the “equal-split discontinuous” rule described in Section 9.2.2 of Okabe and Sugihara (2012). The resulting function is continuous except at the network vertices. -
In the default case (where
distance="path"
andcontinuous=TRUE
andkernel="gaussian"
, computation is performed rapidly by solving the classical heat equation on the network, as described in McSwiggan et al (2016). The arguments are passed todensityHeat.lpp
which performs the computation. Computational time is short, but increases quadratically withsigma
. -
In all other cases, computation is performed by path-tracing as described in Okabe and Sugihara (2012); the arguments are passed to
densityEqualSplit
which performs the computation. Computation time can be extremely long, and increases exponentially withsigma
.
-
If
distance="euclidean"
, the smoothing is performed using a two-dimensional kernel. The arguments are passed todensityQuick.lpp
to perform the computation. Computation time is very short. See the help fordensityQuick.lpp
for further details.
There is also a method for split point patterns on a linear network
(class "splitppx"
) which will return a list of pixel images.
The argument sigma
specifies the smoothing bandwidth.
If sigma
is missing or NULL
,
the default is one-eighth of the length of the shortest side
of the bounding box of x
.
If sigma
is a function in the R language, it is assumed
to be a bandwidth selection rule, and it will be applied to x
to compute the bandwidth value.
Value
A pixel image on the linear network (object of class "linim"
),
or in some cases, a numeric vector of length equal to npoints(x)
.
Infinite bandwidth
If sigma=Inf
, the resulting density estimate is
constant over all locations,
and is equal to the average density of points per unit length.
(If the network is not connected, then this rule
is applied separately to each connected component of the network).
Author(s)
Adrian Baddeley Adrian.Baddeley@curtin.edu.au and Greg McSwiggan.
References
McSwiggan, G., Baddeley, A. and Nair, G. (2016) Kernel density estimation on a linear network. Scandinavian Journal of Statistics 44, 324–345.
Okabe, A. and Sugihara, K. (2012) Spatial analysis along networks. Wiley.
See Also
lpp
,
linim
,
densityQuick.lpp
,
densityHeat.lpp
,
densityVoronoi.lpp
Examples
X <- runiflpp(3, simplenet)
D <- density(X, 0.2, verbose=FALSE)
plot(D, style="w", main="", adjust=2)
Dq <- density(X, 0.2, distance="euclidean")
plot(Dq, style="w", main="", adjust=2)
Dw <- density(X, 0.2, weights=c(1,2,-1), verbose=FALSE)
De <- density(X, 0.2, kernel="epanechnikov", verbose=FALSE)
Ded <- density(X, 0.2, kernel="epanechnikov", continuous=FALSE, verbose=FALSE)