Knetinhom {spatstat.Knet} | R Documentation |
Geometrically-Corrected Inhomogeneous K Function on Network
Description
Compute the geometrically-corrected inhomogeneous K
function
for a point pattern on a linear network.
Usage
Knetinhom(X, lambda, r = NULL, freq, ..., verbose=FALSE)
Arguments
X |
Point pattern on a linear network (object of class |
lambda |
Fitted intensity of the point process. Either a numeric vector
giving values of the fitted intensity at each data point of
|
r |
Optional. Numeric vector of values of the function argument
|
freq |
Vector of frequencies corresponding to the point events on the network. The length of this vector should be equal to the number of points on the network. The default frequency is one for every point on the network. |
... |
Ignored. |
verbose |
Logical value indicating whether to print progress reports during the computation. |
Details
This command computes the inhomogeneous version of the
geometrically-corrected K
function, proposed by Ang et al
(2012), from point pattern data on a linear network.
The algorithm used in this computation is described in Rakshit et al (2019).
The spatstat function
linearKinhom
is usable (and slightly faster) for this purpose
for small datasets, but requires substantial amounts of memory.
For larger datasets,
the function Knetinhom
is much more efficient.
Value
Function value table (object of class "fv"
).
Author(s)
Suman Rakshit (modified by Adrian Baddeley)
References
Ang, Q.W., Baddeley, A. and Nair, G. (2012) Geometrically corrected second-order analysis of events on a linear network, with applications to ecology and criminology. Scandinavian Journal of Statistics 39, 591–617.
Rakshit, S., Baddeley, A. and Nair, G. (2019)
Efficient code for second order analysis of events on a linear network.
Journal of Statistical Software 90 (1) 1–37.
DOI: 10.18637/jss.v090.i01
Examples
UC <- unmark(chicago)
fit <- lppm(UC ~ x+y)
r <- seq(0, 1000, length = 41)
K <- Knetinhom(UC, lambda=fit, r = r)