sarorderedprobit {spatialprobit}R Documentation

Bayesian estimation of the SAR ordered probit model

Description

Bayesian estimation of the spatial autoregressive ordered probit model (SAR ordered probit model).

Usage

sarorderedprobit(formula, W, data, subset, ...)

sar_ordered_probit_mcmc(y, X, W, ndraw = 1000, burn.in = 100, thinning = 1, 
  prior=list(a1=1, a2=1, c=rep(0, ncol(X)), T=diag(ncol(X))*1e12, lflag = 0), 
  start = list(rho = 0.75, beta = rep(0, ncol(X)), 
  phi = c(-Inf, 0:(max(y)-1), Inf)),
  m=10, computeMarginalEffects=TRUE, showProgress=FALSE)

Arguments

y

dependent variables. vector of discrete choices from 1 to J ({1,2,...,J})

X

design matrix

W

spatial weight matrix

ndraw

number of MCMC iterations

burn.in

number of MCMC burn-in to be discarded

thinning

MCMC thinning factor, defaults to 1.

prior

A list of prior settings for \rho \sim Beta(a1,a2) and \beta \sim N(c,T). Defaults to diffuse prior for beta.

start

list of start values

m

Number of burn-in samples in innermost Gibbs sampler. Defaults to 10.

computeMarginalEffects

Flag if marginal effects are calculated. Defaults to TRUE. Currently without effect.

showProgress

Flag if progress bar should be shown. Defaults to FALSE.

formula

an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted.

data

an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment(formula), typically the environment from which sarprobit is called.

subset

an optional vector specifying a subset of observations to be used in the fitting process.

...

additional arguments to be passed

Details

Bayesian estimates of the spatial autoregressive ordered probit model (SAR ordered probit model)

z = \rho W z + X \beta + \epsilon, \epsilon \sim N(0, I_n)

z = (I_n - \rho W)^{-1} X \beta + (I_n - \rho W)^{-1} \epsilon

where y is a (n \times 1) vector of discrete choices from 1 to J, y \in \{1,2,...,J\}, where

y = 1 for -\infty \le z \le \phi_1 = 0
y = 2 for \phi_1 \le z \le \phi_2
...
y = j for \phi_{j-1} \le z \le \phi_j
...
y = J for \phi_{J-1} \le z \le \infty

The vector \phi=(\phi_1,...,\phi_{J-1})' (J-1 \times 1) represents the cut points (threshold values) that need to be estimated. \phi_1 = 0 is set to zero by default.

\beta is a (k \times 1) vector of parameters associated with the (n \times k) data matrix X.

\rho is the spatial dependence parameter.

The error variance \sigma_e is set to 1 for identification.

Computation of marginal effects is currently not implemented.

Value

Returns a structure of class sarprobit:

beta

posterior mean of bhat based on draws

rho

posterior mean of rho based on draws

phi

posterior mean of phi based on draws

coefficients

posterior mean of coefficients

fitted.values

fitted values

fitted.reponse

fitted reponse

ndraw

# of draws

bdraw

beta draws (ndraw-nomit x nvar)

pdraw

rho draws (ndraw-nomit x 1)

phidraw

phi draws (ndraw-nomit x 1)

a1

a1 parameter for beta prior on rho from input, or default value

a2

a2 parameter for beta prior on rho from input, or default value

time

total time taken

rmax

1/max eigenvalue of W (or rmax if input)

rmin

1/min eigenvalue of W (or rmin if input)

tflag

'plevel' (default) for printing p-levels; 'tstat' for printing bogus t-statistics

lflag

lflag from input

cflag

1 for intercept term, 0 for no intercept term

lndet

a matrix containing log-determinant information (for use in later function calls to save time)

W

spatial weights matrix

X

regressor matrix

Author(s)

Stefan Wilhelm <wilhelm@financial.com>

References

LeSage, J. and Pace, R. K. (2009), Introduction to Spatial Econometrics, CRC Press, chapter 10, section 10.2

See Also

sarprobit for the SAR binary probit model

Examples


library(spatialprobit)
set.seed(1)

################################################################################
#
# Example with J = 4 alternatives
#
################################################################################

# set up a model like in SAR probit
J <- 4   
# ordered alternatives j=1, 2, 3, 4 
# --> (J-2)=2 cutoff-points to be estimated phi_2, phi_3
phi <- c(-Inf, 0,  +1, +2, Inf)    # phi_0,...,phi_j, vector of length (J+1)
# phi_1 = 0 is a identification restriction

# generate random samples from true model
n <- 400             # number of items
k <- 3               # 3 beta parameters
beta <- c(0, -1, 1)  # true model parameters k=3 beta=(beta1,beta2,beta3)
rho <- 0.75
# design matrix with two standard normal variates as "coordinates"
X <- cbind(intercept=1, x=rnorm(n), y=rnorm(n))

# identity matrix I_n
I_n <- sparseMatrix(i=1:n, j=1:n, x=1)

# build spatial weight matrix W from coordinates in X
W <- kNearestNeighbors(x=rnorm(n), y=rnorm(n), k=6)

# create samples from epsilon using independence of distributions (rnorm()) 
# to avoid dense matrix I_n
eps <- rnorm(n=n, mean=0, sd=1)
z   <- solve(qr(I_n - rho * W), X %*% beta + eps)

# ordered variable y:
# y_i = 1 for phi_0 < z <= phi_1; -Inf < z <= 0
# y_i = 2 for phi_1 < z <= phi_2
# y_i = 3 for phi_2 < z <= phi_3
# y_i = 4 for phi_3 < z <= phi_4

# y in {1, 2, 3} 
y   <- cut(as.double(z), breaks=phi, labels=FALSE, ordered_result = TRUE)
table(y)

#y
#  1   2   3   4 
#246  55  44  55

# estimate SAR Ordered Probit
res <- sar_ordered_probit_mcmc(y=y, X=X, W=W, showProgress=TRUE)
summary(res)

#----MCMC spatial autoregressive ordered probit----
#Execution time  = 12.152 secs
#
#N draws         =   1000, N omit (burn-in)=    100
#N observations  =    400, K covariates    =      3
#Min rho         = -1.000, Max rho         =  1.000
#--------------------------------------------------
#
#y
#  1   2   3   4 
#246  55  44  55 
#          Estimate Std. Dev  p-level t-value Pr(>|z|)    
#intercept -0.10459  0.05813  0.03300  -1.799   0.0727 .  
#x         -0.78238  0.07609  0.00000 -10.283   <2e-16 ***
#y          0.83102  0.07256  0.00000  11.452   <2e-16 ***
#rho        0.72289  0.04045  0.00000  17.872   <2e-16 ***
#y>=2       0.00000  0.00000  1.00000      NA       NA    
#y>=3       0.74415  0.07927  0.00000   9.387   <2e-16 ***
#y>=4       1.53705  0.10104  0.00000  15.212   <2e-16 ***
#---

addmargins(table(y=res$y, fitted=res$fitted.response))

#     fitted
#y       1   2   3   4 Sum
#  1   218  26   2   0 246
#  2    31  19   5   0  55
#  3    11  19  12   2  44
#  4     3  14  15  23  55
#  Sum 263  78  34  25 400


[Package spatialprobit version 1.0.4 Index]