sar_lndet {spatialprobit} | R Documentation |
Approximation of the log determinant \ln{|I_n - \rho W|}
of a spatial weight matrix
Description
Compute the log determinant \ln{|I_n - \rho W|}
of a
spatial weight matrix W
using either the exact approach, or using some approximations like
the Chebyshev log determinant approximation or Pace and Barry approximation.
Usage
sar_lndet(ldetflag, W, rmin, rmax)
lndetfull(W, rmin, rmax)
lndetChebyshev(W, rmin, rmax)
Arguments
ldetflag |
flag to compute the exact or approximate log-determinant (Chebychev approximation, Pace and Barry approximation). See details. |
W |
spatial weight matrix |
rmin |
minimum eigen value |
rmax |
maximum eigen value |
Details
This method will no longer provide its own implementation and will use the already existing methods in the package spatialreg (do_ldet).
ldetflag=0
will compute the exact log-determinant at some gridpoints, whereas
ldetflag=1
will compute the Chebyshev log-determinant approximation.
ldetflag=2
will compute the Barry and Pace (1999) Monte Carlo approximation
of the log-determinant.
Exact log-determinant:
The exact log determinant \ln|I_n - \rho W|
is evaluated on a grid from \rho=-1,...,+1
. The gridpoints
are then approximated by a spline function.
Chebychev approximation:
This option provides the Chebyshev log-determinant approximation as proposed
by Pace and LeSage (2004). The implementation is faster than the full
log-determinant method.
Value
detval |
a 2-column |
time |
execution time |
Author(s)
James P. LeSage, Adapted to R by Miguel Godinho de Matos <miguelgodinhomatos@cmu.edu>
References
Pace, R. K. and Barry, R. (1997), Quick Computation of Spatial Autoregressive Estimators, Geographical Analysis, 29, 232–247
R. Barry and R. K. Pace (1999) A Monte Carlo Estimator of the Log Determinant of Large Sparse Matrices, Linear Algebra and its Applications, 289, 41–54.
Pace, R. K. and LeSage, J. (2004), Chebyshev Approximation of log-determinants of spatial weight matrices, Computational Statistics and Data Analysis, 45, 179–196.
LeSage, J. and Pace, R. K. (2009), Introduction to Spatial Econometrics, CRC Press, chapter 4
See Also
do_ldet for computation of log-determinants
Examples
require(Matrix)
# sparse matrix representation for spatial weight matrix W (d x d)
# and m nearest neighbors
d <- 10
m <- 3
W <- sparseMatrix(i=rep(1:d, each=m),
j=replicate(d, sample(x=1:d, size=m, replace=FALSE)), x=1/m, dims=c(d, d))
# exact log determinant
ldet1 <- sar_lndet(ldetflag=0, W, rmin=-1, rmax=1)
# Chebychev approximation of log determinant
ldet2 <- sar_lndet(ldetflag=1, W, rmin=-1, rmax=1)
plot(ldet1$detval[,1], ldet1$detval[,2], type="l", col="black",
xlab="rho", ylab="ln|I_n - rho W|",
main="Log-determinant ln|I_n - rho W| Interpolations")
lines(ldet2$detval[,1], ldet2$detval[,2], type="l", col="red")
legend("bottomleft", legend=c("Exact log-determinant", "Chebychev approximation"),
lty=1, lwd=1, col=c("black","red"), bty="n")