LeSagePaceExperiment {spatialprobit} | R Documentation |
Replicate the LeSage and Pace (2009), section 10.1.5 experiment
Description
This method replicates the experiment from LeSage and Pace (2009), section 10.1.5. It first generates data from a SAR probit model and then estimates the model with our implementation.
Usage
LeSagePaceExperiment(n = 400, beta = c(0, 1, -1), rho = 0.75, ndraw = 1000,
burn.in = 200, thinning = 1, m = 10, computeMarginalEffects=TRUE, ...)
Arguments
n |
sample size |
beta |
parameter vector |
rho |
spatial dependence parameter |
ndraw |
number of draws |
burn.in |
number of burn-in samples |
thinning |
thinning parameter |
m |
Gibbs sampler burn-in size for drawing from the truncated multinormal distribution |
computeMarginalEffects |
Should marginal effects be computed? |
... |
Additional parameters to be passed to |
Value
Returns a structure of class sarprobit
Author(s)
Stefan Wilhelm <wilhelm@financial.com>
References
LeSage, J. and Pace, R. K. (2009), Introduction to Spatial Econometrics, CRC Press, section 10.1.5
Examples
# LeSage/Pace(2009), Table 10.1, p.291: n=400, m=10
res1 <- LeSagePaceExperiment(n=400, beta=c(0,1,-1), rho=0.75,
ndraw=1000, burn.in=200, thinning=1, m=10)
res1$time
res1$coefficients
summary(res1)
# LeSage/Pace(2009), Table 10.1, p.291: n=1000, m=1
res2 <- LeSagePaceExperiment(n=1000, beta=c(0,1,-1), rho=0.75,
ndraw=1000, burn.in=200, thinning=1, m=1)
res2$time
res2$coefficients
summary(res2)
# LeSage/Pace(2009), Table 10.2, p.291: n=400, m=1
res400.1 <- LeSagePaceExperiment(n=400, beta=c(0,1,-1), rho=0.75,
ndraw=1000, burn.in=200, thinning=1, m=1)
summary(res400.1)
# LeSage/Pace(2009), Table 10.2, p.291: n=400, m=2
res400.2 <- LeSagePaceExperiment(n=400, beta=c(0,1,-1), rho=0.75,
ndraw=1000, burn.in=200, thinning=1, m=2)
summary(res400.2)
# LeSage/Pace(2009), Table 10.2, p.291: n=400, m=10
res400.10 <- LeSagePaceExperiment(n=400, beta=c(0,1,-1), rho=0.75,
ndraw=1000, burn.in=200, thinning=1, m=10)
summary(res400.10)
[Package spatialprobit version 1.0.4 Index]