optimization_function {spatialRF} | R Documentation |
Optimization equation to select spatial predictors
Description
Optimizes the selection of spatial predictors using two different methods: "moran.i", and "p.value".
Usage
optimization_function(
x = NULL,
weight.r.squared = NULL,
weight.penalization.n.predictors = NULL,
optimization.method = "moran.i"
)
Arguments
x |
Optimization data frame generated internally by |
weight.r.squared |
Numeric between 0 and 1, weight of R-squared in the optimization process. Default: |
weight.penalization.n.predictors |
Numeric between 0 and 1, weight of the penalization on the number of added spatial predictors. Default: |
optimization.method |
Character, one of "moran.i", and "p.value". Default: |
Details
The method "moran.i" tries to maximize 1 - Moran's
I while taking into account the R-squared of the model and a penalization on the number of introduced spatial predictors through the expression
(1 - Moran's I) + w1 * r.squared - w2 * penalization
The method "p.value" uses a binary version of the p-values of Moran's I (1 if >= 0.05, 0 otherwise), and uses the expression
max(1 - Moran's I, binary p-value) + w1 * r.squared - w2 * penalization
The "moran.i" method generally selects more spatial predictors than the "p.value" method.
Value
A numeric vector with the optimization criteria.
See Also
select_spatial_predictors_recursive()
, select_spatial_predictors_sequential()