logistic.regression {spatialEco} | R Documentation |
Logistic and Auto-logistic regression
Description
Performs a logistic (binomial) or auto-logistic (spatially lagged binomial) regression using maximum likelihood or penalized maximum likelihood estimation.
Usage
logistic.regression(
ldata,
y,
x,
penalty = TRUE,
autologistic = FALSE,
coords = NULL,
bw = NULL,
type = "inverse",
style = "W",
longlat = FALSE,
...
)
Arguments
ldata |
data.frame object containing variables |
y |
Dependent variable (y) in ldata |
x |
Independent variable(s) (x) in ldata |
penalty |
Apply regression penalty (TRUE/FALSE) |
autologistic |
Add auto-logistic term (TRUE/FALSE) |
coords |
Geographic coordinates for auto-logistic model matrix or sp object. |
bw |
Distance bandwidth to calculate spatial lags (if empty neighbors result, need to increase bandwidth). If not provided it will be calculated automatically based on the minimum distance that includes at least one neighbor. |
type |
Neighbor weighting scheme (see autocov_dist) |
style |
Type of neighbor matrix (Wij), default is mean of neighbors |
longlat |
Are coordinates (coords) in geographic, lat/long (TRUE/FALSE) |
... |
Additional arguments passed to lrm |
Details
It should be noted that the auto-logistic model (Besag 1972) is intended for exploratory analysis of spatial effects. Auto-logistic are know to underestimate the effect of environmental variables and tend to be unreliable (Dormann 2007). Wij matrix options under style argument - B is the basic binary coding, W is row standardized (sums over all links to n), C is globally standardized (sums over all links to n), U is equal to C divided by the number of neighbours (sums over all links to unity) and S is variance-stabilizing. Spatially lagged y defined as: W(y)ij=sumj_(Wij yj)/ sumj_(Wij) where; Wij=1/Euclidean(i,j) If the object passed to the function is an sp class there is no need to call the data slot directly via "object@data", just pass the object name.
Value
A list class object with the following components:
model - lrm model object (rms class)
bandwidth - If AutoCov = TRUE returns the distance bandwidth used for the auto-covariance function
diagTable - data.frame of regression diagnostics
coefTable - data.frame of regression coefficients (log-odds)
Residuals - data.frame of residuals and standardized residuals
AutoCov - If an auto-logistic model, AutoCov represents lagged auto-covariance term
Author(s)
Jeffrey S. Evans jeffrey_evans@tnc.org
References
Besag, J.E., (1972) Nearest-neighbour systems and the auto-logistic model for binary data. Journal of the Royal Statistical Society, Series B Methodological 34:75-83
Dormann, C.F., (2007) Assessing the validity of autologistic regression. Ecological Modelling 207:234-242
Le Cessie, S., Van Houwelingen, J.C., (1992) Ridge estimators in logistic regression. Applied Statistics 41:191-201
Shao, J., (1993) Linear model selection by cross-validation. JASA 88:486-494
See Also
Examples
p = c("sf", "sp", "spdep", "rms")
if(any(!unlist(lapply(p, requireNamespace, quietly=TRUE)))) {
m = which(!unlist(lapply(p, requireNamespace, quietly=TRUE)))
message("Can't run examples, please install ", paste(p[m], collapse = " "))
} else {
invisible(lapply(p, require, character.only=TRUE))
data(meuse, package = "sp")
meuse <- st_as_sf(meuse, coords = c("x", "y"), crs = 28992,
agr = "constant")
meuse$DepVar <- rbinom(nrow(meuse), 1, 0.5)
#### Logistic model
lmodel <- logistic.regression(meuse, y='DepVar',
x=c('dist','cadmium','copper'))
lmodel$model
lmodel$diagTable
lmodel$coefTable
#### Logistic model with factorial variable
lmodel <- logistic.regression(meuse, y='DepVar',
x=c('dist','cadmium','copper', 'soil'))
lmodel$model
lmodel$diagTable
lmodel$coefTable
### Auto-logistic model using 'autocov_dist' in 'spdep' package
lmodel <- logistic.regression(meuse, y='DepVar',
x=c('dist','cadmium','copper'), autologistic=TRUE,
coords=st_coordinates(meuse), bw=5000)
lmodel$model
lmodel$diagTable
lmodel$coefTable
est <- predict(lmodel$model, type='fitted.ind')
#### Add residuals, standardized residuals and estimated probabilities
VarNames <- rownames(lmodel$model$var)[-1]
meuse$AutoCov <- lmodel$AutoCov
meuse$Residual <- lmodel$Residuals[,1]
meuse$StdResid <- lmodel$Residuals[,2]
meuse$Probs <- predict(lmodel$model,
sf::st_drop_geometry(meuse[,VarNames]),
type='fitted')
#### Plot fit and probabilities
resid(lmodel$model, "partial", pl="loess")
# plot residuals
resid(lmodel$model, "partial", pl=TRUE)
# global test of goodness of fit
resid(lmodel$model, "gof")
# Approx. leave-out linear predictors
lp1 <- resid(lmodel$model, "lp1")
# Approx leave-out-1 deviance
-2 * sum(meuse$DepVar * lp1 + log(1-plogis(lp1)))
# plot estimated probabilities at points
plot(meuse['Probs'], pch=20)
}