gen_cov_cor {spass} | R Documentation |
Generation of a covariance or a correlation matrix
Description
Generate a covariance or correlation matrix given parameters var
, rho
, theta
for the covariance structure, Time
for the observed timepoints and cov=TRUE
if a covariance or cov=FALSE
if a correlation-matrix is generated.
Usage
gen_cov_cor(var = 1, rho, theta, Time, cov = TRUE)
Arguments
var |
variance at each timepoint |
rho |
correlation between two adjacent timepoints 1 timeunit appart |
theta |
variable specifying the type of the correlation structure: see 'Details' |
Time |
list with time measures which are used to generate the covariance- or correlation-structure: see 'Details' |
cov |
TRUE/FALSE statement which determines if a covariance- or a correlation-matrix is generated. |
Details
gen_cov_cor
is used to generate either a covariance or a correlation matrix. Given vector Time
and parameters var
, rho
and theta
the following two equations are used to calculate the covariance and the correlation between two timepoints, respectively:
cov(Time[i],Time[j])=var*(rho^(abs(Time[i]-Time[j])^theta))
corr(Time[i],Time[j])=rho^(abs(Time[i]-Time[j])^theta) ]]
Value
gen_cov_cor
returns a covariance or correlation matrix.
Source
gen_cov_cor
uses code contributed by Roland Gerard Gera
@seealso r.gee.1subgroup
for information on the generated longitudinal data and n.gee.1subgroup
for the calculation of
initial sample sizes for longitudinal GEE-models and bssr.gee.1subgroup
for blinded
sample size re-estimation within a trial. See estimcov
for more information on the used minimization algorithms.
Examples
#Generate a covariance-matrix with measurements at Baseline and at times c(1,1.5,2,5)
covar<-gen_cov_cor(var=3,rho=0.25,theta=1,Time=c(0,1,1.5,2,5),cov=TRUE)
covar
#Generate a correlation-matrix with the same values
corr<-gen_cov_cor(rho=0.25,theta=1,Time=c(0,1,1.5,2,5),cov=FALSE)
corr