estimcov {spass} | R Documentation |
Estimation of simulation parameters
Description
estimcov
estimates the covariance matrix and dropout rates given a dataset and observation-times
Usage
estimcov(
data,
Time,
Startvalues = c(3, 0.5, 1),
stepwidth = c(0.001, 0.001, 0.001),
maxiter = 10000,
lower = c(1e-04, 1e-04, 1e-04),
upper = c(Inf, 5, 3)
)
Arguments
data |
matrix with the dataset which is used to estimate the covariance and dropout structure. |
Time |
vector with observation-times. |
Startvalues |
vector with starting values for variance, |
stepwidth |
vector describing the step length of previously mentioned values. |
maxiter |
maximum amount of iterations |
lower |
vector with minimum for the parameters described in Startvalues |
upper |
vector with maximum for the parameters described in Startvalues |
Details
This function is designed to estimate the variance, rho
and theta
and a vector with the dropout rate in the data.
Value
estimcov
returns a list with two entries. In the first the parameters variance, rho
and theta
are returned and in the second a vector with the dropout-rate is returned.
Source
estimcov
uses code contributed by Roland Gerard Gera.
Examples
# First generate a dataset with 200 patients, rho =0.25 and tau = 0.5 and
# then estimate the parameters using estimcov.
set.seed(2015)
dataset <- r.gee.1subgroup(n=200, reg=list(c(0,0,0,0.1),c(0,0,0,0.1)), sigma=c(3,2.5),
tau=0.5, rho=0.25, theta=1, k=1.5, Time=c(0:5), OD=0)
estimations <- estimcov(data=dataset,Time=c(0:5))
estimations[[1]]
estimations[[2]]