sparsestep-package {sparsestep} | R Documentation |
SparseStep: Approximating the Counting Norm for Sparse Regularization
Description
In the SparseStep regression model the ordinary least-squares problem is
augmented with an approximation of the exact \ell_0
pseudonorm.
This approximation is made increasingly more accurate in the SparseStep
algorithm, resulting in a sparse solution to the regression problem. See
the references for more information.
SparseStep functions
The main SparseStep functions are:
sparsestep
Fit a SparseStep model for a given range of
\lambda
valuespath.sparsestep
Fit the SparseStep model along a path of
\lambda
values which are generated such that a model is created at each possible level of sparsity, or until a given recursion depth is reached.
Other available functions are:
plot
Plot the coefficient path of the SparseStep model.
predict
Predict the outcome of the linear model using SparseStep
coef
Get the coefficients from the SparseStep model
print
Print a short description of the SparseStep model
Author(s)
Gerrit J.J. van den Burg, Patrick J.F. Groenen, Andreas Alfons
Maintainer: Gerrit J.J. van den Burg <gertjanvandenburg@gmail.com>
References
Van den Burg, G.J.J., Groenen, P.J.F. and Alfons, A. (2017). SparseStep: Approximating the Counting Norm for Sparse Regularization, arXiv preprint arXiv:1701.06967 [stat.ME]. URL https://arxiv.org/abs/1701.06967.
Examples
x <- matrix(rnorm(100*20), 100, 20)
y <- rnorm(100)
fit <- sparsestep(x, y)
plot(fit)
fits <- path.sparsestep(x, y)
plot(fits)
x2 <- matrix(rnorm(50*20), 50, 20)
y2 <- predict(fits, x2)