sdf_rhyper {sparklyr} | R Documentation |
Generate random samples from a hypergeometric distribution
Description
Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a hypergeometric distribution.
Usage
sdf_rhyper(
sc,
nn,
m,
n,
k,
num_partitions = NULL,
seed = NULL,
output_col = "x"
)
Arguments
sc |
A Spark connection. |
nn |
Sample Size. |
m |
The number of successes among the population. |
n |
The number of failures among the population. |
k |
The number of draws. |
num_partitions |
Number of partitions in the resulting Spark dataframe (default: default parallelism of the Spark cluster). |
seed |
Random seed (default: a random long integer). |
output_col |
Name of the output column containing sample values (default: "x"). |
See Also
Other Spark statistical routines:
sdf_rbeta()
,
sdf_rbinom()
,
sdf_rcauchy()
,
sdf_rchisq()
,
sdf_rexp()
,
sdf_rgamma()
,
sdf_rgeom()
,
sdf_rlnorm()
,
sdf_rnorm()
,
sdf_rpois()
,
sdf_rt()
,
sdf_runif()
,
sdf_rweibull()
[Package sparklyr version 1.8.6 Index]