sdf_rchisq {sparklyr} | R Documentation |
Generate random samples from a chi-squared distribution
Description
Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a chi-squared distribution.
Usage
sdf_rchisq(sc, n, df, num_partitions = NULL, seed = NULL, output_col = "x")
Arguments
sc |
A Spark connection. |
n |
Sample Size (default: 1000). |
df |
Degrees of freedom (non-negative, but can be non-integer). |
num_partitions |
Number of partitions in the resulting Spark dataframe (default: default parallelism of the Spark cluster). |
seed |
Random seed (default: a random long integer). |
output_col |
Name of the output column containing sample values (default: "x"). |
See Also
Other Spark statistical routines:
sdf_rbeta()
,
sdf_rbinom()
,
sdf_rcauchy()
,
sdf_rexp()
,
sdf_rgamma()
,
sdf_rgeom()
,
sdf_rhyper()
,
sdf_rlnorm()
,
sdf_rnorm()
,
sdf_rpois()
,
sdf_rt()
,
sdf_runif()
,
sdf_rweibull()
[Package sparklyr version 1.8.6 Index]