ml_one_vs_rest {sparklyr} | R Documentation |
Spark ML – OneVsRest
Description
Reduction of Multiclass Classification to Binary Classification. Performs reduction using one against all strategy. For a multiclass classification with k classes, train k models (one per class). Each example is scored against all k models and the model with highest score is picked to label the example.
Usage
ml_one_vs_rest(
x,
formula = NULL,
classifier = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("one_vs_rest_"),
...
)
Arguments
x |
A |
formula |
Used when |
classifier |
Object of class |
features_col |
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by |
label_col |
Label column name. The column should be a numeric column. Usually this column is output by |
prediction_col |
Prediction column name. |
uid |
A character string used to uniquely identify the ML estimator. |
... |
Optional arguments; see Details. |
Value
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
object. If
it is a ml_pipeline
, it will return a pipeline with the predictor
appended to it. If a tbl_spark
, it will return a tbl_spark
with
the predictions added to it.
See Also
Other ml algorithms:
ml_aft_survival_regression()
,
ml_decision_tree_classifier()
,
ml_gbt_classifier()
,
ml_generalized_linear_regression()
,
ml_isotonic_regression()
,
ml_linear_regression()
,
ml_linear_svc()
,
ml_logistic_regression()
,
ml_multilayer_perceptron_classifier()
,
ml_naive_bayes()
,
ml_random_forest_classifier()