ml_linear_svc {sparklyr} | R Documentation |
Spark ML – LinearSVC
Description
Perform classification using linear support vector machines (SVM). This binary classifier optimizes the Hinge Loss using the OWLQN optimizer. Only supports L2 regularization currently.
Usage
ml_linear_svc(
x,
formula = NULL,
fit_intercept = TRUE,
reg_param = 0,
max_iter = 100,
standardization = TRUE,
weight_col = NULL,
tol = 1e-06,
threshold = 0,
aggregation_depth = 2,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
raw_prediction_col = "rawPrediction",
uid = random_string("linear_svc_"),
...
)
Arguments
x |
A |
formula |
Used when |
fit_intercept |
Boolean; should the model be fit with an intercept term? |
reg_param |
Regularization parameter (aka lambda) |
max_iter |
The maximum number of iterations to use. |
standardization |
Whether to standardize the training features before fitting the model. |
weight_col |
The name of the column to use as weights for the model fit. |
tol |
Param for the convergence tolerance for iterative algorithms. |
threshold |
in binary classification prediction, in range [0, 1]. |
aggregation_depth |
(Spark 2.1.0+) Suggested depth for treeAggregate (>= 2). |
features_col |
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by |
label_col |
Label column name. The column should be a numeric column. Usually this column is output by |
prediction_col |
Prediction column name. |
raw_prediction_col |
Raw prediction (a.k.a. confidence) column name. |
uid |
A character string used to uniquely identify the ML estimator. |
... |
Optional arguments; see Details. |
Value
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
object. If
it is a ml_pipeline
, it will return a pipeline with the predictor
appended to it. If a tbl_spark
, it will return a tbl_spark
with
the predictions added to it.
See Also
Other ml algorithms:
ml_aft_survival_regression()
,
ml_decision_tree_classifier()
,
ml_gbt_classifier()
,
ml_generalized_linear_regression()
,
ml_isotonic_regression()
,
ml_linear_regression()
,
ml_logistic_regression()
,
ml_multilayer_perceptron_classifier()
,
ml_naive_bayes()
,
ml_one_vs_rest()
,
ml_random_forest_classifier()
Examples
## Not run:
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%
filter(Species != "setosa") %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
iris_training <- partitions$training
iris_test <- partitions$test
svc_model <- iris_training %>%
ml_linear_svc(Species ~ .)
pred <- ml_predict(svc_model, iris_test)
ml_binary_classification_evaluator(pred)
## End(Not run)