ml-transform-methods {sparklyr} | R Documentation |
Spark ML – Transform, fit, and predict methods (ml_ interface)
Description
Methods for transformation, fit, and prediction. These are mirrors of the corresponding sdf-transform-methods.
Usage
is_ml_transformer(x)
is_ml_estimator(x)
ml_fit(x, dataset, ...)
## Default S3 method:
ml_fit(x, dataset, ...)
ml_transform(x, dataset, ...)
ml_fit_and_transform(x, dataset, ...)
ml_predict(x, dataset, ...)
## S3 method for class 'ml_model_classification'
ml_predict(x, dataset, probability_prefix = "probability_", ...)
Arguments
x |
A |
dataset |
A |
... |
Optional arguments; currently unused. |
probability_prefix |
String used to prepend the class probability output columns. |
Details
These methods are
Value
When x
is an estimator, ml_fit()
returns a transformer whereas ml_fit_and_transform()
returns a transformed dataset. When x
is a transformer, ml_transform()
and ml_predict()
return a transformed dataset. When ml_predict()
is called on a ml_model
object, additional columns (e.g. probabilities in case of classification models) are appended to the transformed output for the user's convenience.
[Package sparklyr version 1.8.6 Index]