ft_string_indexer {sparklyr} | R Documentation |
Feature Transformation – StringIndexer (Estimator)
Description
A label indexer that maps a string column of labels to an ML column of
label indices. If the input column is numeric, we cast it to string and
index the string values. The indices are in [0, numLabels)
, ordered by
label frequencies. So the most frequent label gets index 0. This function
is the inverse of ft_index_to_string
.
Usage
ft_string_indexer(
x,
input_col = NULL,
output_col = NULL,
handle_invalid = "error",
string_order_type = "frequencyDesc",
uid = random_string("string_indexer_"),
...
)
ml_labels(model)
ft_string_indexer_model(
x,
input_col = NULL,
output_col = NULL,
labels,
handle_invalid = "error",
uid = random_string("string_indexer_model_"),
...
)
Arguments
x |
A |
input_col |
The name of the input column. |
output_col |
The name of the output column. |
handle_invalid |
(Spark 2.1.0+) Param for how to handle invalid entries. Options are 'skip' (filter out rows with invalid values), 'error' (throw an error), or 'keep' (keep invalid values in a special additional bucket). Default: "error" |
string_order_type |
(Spark 2.3+)How to order labels of string column.
The first label after ordering is assigned an index of 0. Options are
|
uid |
A character string used to uniquely identify the feature transformer. |
... |
Optional arguments; currently unused. |
model |
A fitted StringIndexer model returned by |
labels |
Vector of labels, corresponding to indices to be assigned. |
Details
In the case where x
is a tbl_spark
, the estimator
fits against x
to obtain a transformer, returning a tbl_spark
.
Value
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
or a
ml_estimator
object. If it is a ml_pipeline
, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark
, it will return a tbl_spark
with the transformation
applied to it.
ml_labels()
returns a vector of labels, corresponding to indices to be assigned.
See Also
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_chisq_selector()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder()
,
ft_one_hot_encoder_estimator()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()