ft_stop_words_remover {sparklyr} | R Documentation |
Feature Transformation – StopWordsRemover (Transformer)
Description
A feature transformer that filters out stop words from input.
Usage
ft_stop_words_remover(
x,
input_col = NULL,
output_col = NULL,
case_sensitive = FALSE,
stop_words = ml_default_stop_words(spark_connection(x), "english"),
uid = random_string("stop_words_remover_"),
...
)
Arguments
x |
A |
input_col |
The name of the input column. |
output_col |
The name of the output column. |
case_sensitive |
Whether to do a case sensitive comparison over the stop words. |
stop_words |
The words to be filtered out. |
uid |
A character string used to uniquely identify the feature transformer. |
... |
Optional arguments; currently unused. |
Value
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
or a
ml_estimator
object. If it is a ml_pipeline
, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark
, it will return a tbl_spark
with the transformation
applied to it.
See Also
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_chisq_selector()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder()
,
ft_one_hot_encoder_estimator()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()