ft_bucketizer {sparklyr} | R Documentation |
Feature Transformation – Bucketizer (Transformer)
Description
Similar to R's cut
function, this transforms a numeric column
into a discretized column, with breaks specified through the splits
parameter.
Usage
ft_bucketizer(
x,
input_col = NULL,
output_col = NULL,
splits = NULL,
input_cols = NULL,
output_cols = NULL,
splits_array = NULL,
handle_invalid = "error",
uid = random_string("bucketizer_"),
...
)
Arguments
x |
A |
input_col |
The name of the input column. |
output_col |
The name of the output column. |
splits |
A numeric vector of cutpoints, indicating the bucket boundaries. |
input_cols |
Names of input columns. |
output_cols |
Names of output columns. |
splits_array |
Parameter for specifying multiple splits parameters. Each element in this array can be used to map continuous features into buckets. |
handle_invalid |
(Spark 2.1.0+) Param for how to handle invalid entries. Options are 'skip' (filter out rows with invalid values), 'error' (throw an error), or 'keep' (keep invalid values in a special additional bucket). Default: "error" |
uid |
A character string used to uniquely identify the feature transformer. |
... |
Optional arguments; currently unused. |
Value
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
or a
ml_estimator
object. If it is a ml_pipeline
, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark
, it will return a tbl_spark
with the transformation
applied to it.
See Also
Other feature transformers:
ft_binarizer()
,
ft_chisq_selector()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder()
,
ft_one_hot_encoder_estimator()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()
Examples
## Not run:
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
iris_tbl %>%
ft_bucketizer(
input_col = "Sepal_Length",
output_col = "Sepal_Length_bucket",
splits = c(0, 4.5, 5, 8)
) %>%
select(Sepal_Length, Sepal_Length_bucket, Species)
## End(Not run)