from_rdd {sparklyr.flint} | R Documentation |
Construct a TimeSeriesRDD from a Spark RDD of rows
Description
Construct a TimeSeriesRDD containing time series data from a Spark RDD of rows
Usage
from_rdd(
rdd,
schema,
is_sorted = FALSE,
time_unit = .sparklyr.flint.globals$kValidTimeUnits,
time_column = .sparklyr.flint.globals$kDefaultTimeColumn
)
fromRDD(
rdd,
schema,
is_sorted = FALSE,
time_unit = .sparklyr.flint.globals$kValidTimeUnits,
time_column = .sparklyr.flint.globals$kDefaultTimeColumn
)
Arguments
rdd |
A Spark RDD[Row] object containing time series data |
schema |
A Spark StructType object containing schema of the time series data |
is_sorted |
Whether the rows being imported are already sorted by time |
time_unit |
Time unit of the time column (must be one of the following values: "NANOSECONDS", "MICROSECONDS", "MILLISECONDS", "SECONDS", "MINUTES", "HOURS", "DAYS" |
time_column |
Name of the time column |
Value
A TimeSeriesRDD useable by the Flint time series library
See Also
Other Spark dataframe utility functions:
collect.ts_rdd()
,
from_sdf()
,
spark_connection.ts_rdd()
,
spark_dataframe.ts_rdd()
,
spark_jobj.ts_rdd()
,
to_sdf()
,
ts_rdd_builder()
Other Spark dataframe utility functions:
collect.ts_rdd()
,
from_sdf()
,
spark_connection.ts_rdd()
,
spark_dataframe.ts_rdd()
,
spark_jobj.ts_rdd()
,
to_sdf()
,
ts_rdd_builder()
Examples
library(sparklyr)
library(sparklyr.flint)
sc <- try_spark_connect(master = "local")
if (!is.null(sc)) {
sdf <- copy_to(sc, tibble::tibble(t = seq(10), v = seq(10)))
rdd <- spark_dataframe(sdf) %>% invoke("rdd")
schema <- spark_dataframe(sdf) %>% invoke("schema")
ts <- from_rdd(
rdd, schema,
is_sorted = TRUE, time_unit = "SECONDS", time_column = "t"
)
} else {
message("Unable to establish a Spark connection!")
}