KMeansSparseCluster.permute {sparcl}R Documentation

Choose tuning parameter for sparse k-means clustering

Description

The tuning parameter controls the L1 bound on w, the feature weights. A permutation approach is used to select the tuning parameter.

Usage

KMeansSparseCluster.permute(x, K=NULL, nperms = 25, wbounds = NULL,
silent = FALSE, nvals = 10, centers=NULL)
## S3 method for class 'KMeansSparseCluster.permute'
print(x,...)
## S3 method for class 'KMeansSparseCluster.permute'
plot(x,...)

Arguments

x

The nxp data matrix, n is the number of observations and p the number of features.

K

The number of clusters desired - that is, the "K" in K-means clustering. Must specify K or centers.

nperms

Number of permutations.

wbounds

The range of tuning parameters to consider. This is the L1 bound on w, the feature weights. If NULL, then a range of values will be chosen automatically. Should be greater than 1 if non-null.

silent

Print out progress?

nvals

If wbounds is NULL, then the number of candidate tuning parameter values to consider.

centers

Optional argument. If you want to run the k-means algorithm starting from a particular set of clusters, then you can enter the Kxp matrix of cluster centers here. Default use case involves taking centers=NULL and instead specifying K.

...

not used.

Details

Sparse k-means clustering seeks a p-vector of weights w (one per feature) and a set of clusters C1,...,CK that optimize $maximize_C1,...,CK,w sum_j w_j BCSS_j$ subject to $||w||_2 <= 1, ||w||_1 <= s, w_j >= 0$, where $BCSS_j$ is the between cluster sum of squares for feature j, and s is a value for the L1 bound on w. Let O(s) denote the objective function with tuning parameter s: i.e. $O(s)=sum_j w_j BCSS_j$.

We permute the data as follows: within each feature, we permute the observations. Using the permuted data, we can run sparse K-means with tuning parameter s, yielding the objective function O*(s). If we do this repeatedly we can get a number of O*(s) values.

Then, the Gap statistic is given by $Gap(s)=log(O(s))-mean(log(O*(s)))$. The optimal s is that which results in the highest Gap statistic. Or, we can choose the smallest s such that its Gap statistic is within $sd(log(O*(s)))$ of the largest Gap statistic.

Value

gaps

The gap statistics obtained (one for each of the tuning parameters tried). If O(s) is the objective function evaluated at the tuning parameter s, and O*(s) is the same quantity but for the permuted data, then Gap(s)=log(O(s))-mean(log(O*(s))).

sdgaps

The standard deviation of log(O*(s)), for each value of the tuning parameter s.

nnonzerows

The number of features with non-zero weights, for each value of the tuning parameter.

wbounds

The tuning parameters considered.

bestw

The value of the tuning parameter corresponding to the highest gap statistic.

Author(s)

Daniela M. Witten and Robert Tibshirani

References

Witten and Tibshirani (2009) A framework for feature selection in clustering.

See Also

KMeansSparseCluster, HierarchicalSparseCluster, HierarchicalSparseCluster.permute

Examples

# generate data
set.seed(11)
x <- matrix(rnorm(50*70),ncol=70)
x[1:25,1:10] <- x[1:25,1:10]+1.5
x <- scale(x, TRUE, TRUE)
# choose tuning parameter
km.perm <-
KMeansSparseCluster.permute(x,K=2,wbounds=seq(2,5,len=8),nperms=3)
print(km.perm)
plot(km.perm)
# run sparse k-means
km.out <- KMeansSparseCluster(x,K=2,wbounds=km.perm$bestw)
print(km.out)
plot(km.out)
# run sparse k-means for a range of tuning parameter values
km.out <- KMeansSparseCluster(x,K=2,wbounds=2:7)
print(km.out)
plot(km.out)
# Repeat, but this time start with a particular choice of cluster
# centers.
# This will do 4-means clustering starting with this particular choice
# of cluster centers.
km.perm.out <- KMeansSparseCluster.permute(x,wbounds=2:6, centers=x[1:4,],nperms=3)
print(km.out)
plot(km.out)

[Package sparcl version 1.0.4 Index]