rankinfo {spaMM} | R Documentation |
Checking the rank of the fixed-effects design matrix
Description
By default, fitting functions in spaMM
check the rank of the design matrix for fixed effects, as stats::lm
or stats::glm
do (but not, say, nlme::lme
). This computation can be quite long.
To save time when fitting different models with the same fixed-effect terms to the same data,
the result of the check can be extracted from a return object by get_rankinfo()
,
and can be provided as argument control.HLfit$rankinfo
to another fit. Alternatively, the check will not be performed if
control.HLfit$rankinfo
is set to NA
.
Usage
get_rankinfo(object)
Arguments
object |
An object of class |
Details
The check is performed by a call to qr()
methods for either dense or sparse matrices.
If the design matrix is singular, a set of columns from the design matrix that define a non-singular matrix is identified. Note that different sets may be identified by sparse- and dense-matrix qr
methods.
Value
A list with elements rank
, whichcols
(a set of columns that define a non-singular matrix), and method
(identifying the algorithm used).
Examples
## Data preparation
# Singular matrix from ?Matrix::qr :
singX <- cbind(int = 1,
b1=rep(1:0, each=3), b2=rep(0:1, each=3),
c1=rep(c(1,0,0), 2), c2=rep(c(0,1,0), 2), c3=rep(c(0,0,1),2))
rownames(singX) <- paste0("r", seq_len(nrow(singX)))
donn <- as.data.frame(singX)
set.seed(123)
donn$y <- runif(6)
fitlm <- fitme(y~int+ b1+b2+c1+c2+c3,data=donn)
get_rankinfo(fitlm)