predict.svcPGOcc {spOccupancy} | R Documentation |
Function for prediction at new locations for single-species spatially-varying coefficient occupancy models
Description
The function predict
collects posterior predictive samples for a set of new
locations given an object of class 'svcPGOcc'. Prediction is possible for both the
latent occupancy state as well as detection.
Usage
## S3 method for class 'svcPGOcc'
predict(object, X.0, coords.0, weights.0, n.omp.threads = 1, verbose = TRUE,
n.report = 100, ignore.RE = FALSE, type = 'occupancy', grid.index.0, ...)
Arguments
object |
an object of class |
X.0 |
the design matrix of covariates at the prediction locations. This should include a column of 1s for the intercept if an intercept is included in the model. If random effects are included in the occupancy (or detection if |
coords.0 |
the spatial coordinates corresponding to |
weights.0 |
not used for objects of class |
n.omp.threads |
a positive integer indicating
the number of threads to use for SMP parallel processing. The package must
be compiled for OpenMP support. For most Intel-based machines, we recommend setting
|
verbose |
if |
ignore.RE |
a logical value indicating whether to include unstructured random effects for prediction. If TRUE, unstructured random effects will be ignored and prediction will only use the fixed effects and the spatial random effects. If FALSE, random effects will be included in the prediction for both observed and unobserved levels of the unstructured random effects. |
n.report |
the interval to report sampling progress. |
type |
a quoted keyword indicating what type of prediction to produce. Valid keywords are 'occupancy' to predict latent occupancy probability and latent occupancy values (this is the default), or 'detection' to predict detection probability given new values of detection covariates. |
grid.index.0 |
an indexing vector used to specify how each row in |
... |
currently no additional arguments |
Value
A list object of class predict.svcPGOcc
. When type = 'occupancy'
, the list consists of:
psi.0.samples |
a |
z.0.samples |
a |
w.0.samples |
a three-dimensional array of posterior predictive samples for the spatial random effects, with dimensions corresponding to MCMC iteration, coefficient, and site. |
run.time |
execution time reported using |
When type = 'detection'
, the list consists of:
p.0.samples |
a |
run.time |
execution time reported using |
The return object will include additional objects used for standard extractor functions.
Note
When ignore.RE = FALSE
, both sampled levels and non-sampled levels of random effects are supported for prediction. For sampled levels, the posterior distribution for the random intercept corresponding to that level of the random effect will be used in the prediction. For non-sampled levels, random values are drawn from a normal distribution using the posterior samples of the random effect variance, which results in fully propagated uncertainty in predictions with models that incorporate random effects.
Author(s)
Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu
References
Hooten, M. B., and Hefley, T. J. (2019). Bringing Bayesian models to life. CRC Press.
Examples
set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 8
J.y <- 8
J <- J.x * J.y
n.rep <- sample(2:4, J, replace = TRUE)
beta <- c(0.5, 2)
p.occ <- length(beta)
alpha <- c(0, 1)
p.det <- length(alpha)
phi <- c(3 / .6, 3 / .8)
sigma.sq <- c(0.5, 0.9)
svc.cols <- c(1, 2)
dat <- simOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, beta = beta, alpha = alpha,
sigma.sq = sigma.sq, phi = phi, sp = TRUE, cov.model = 'exponential',
svc.cols = svc.cols)
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .5), replace = FALSE)
y <- dat$y[-pred.indx, ]
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Prediction covariates
X.0 <- dat$X[pred.indx, ]
# Detection covariates
X.p <- dat$X.p[-pred.indx, , ]
coords <- as.matrix(dat$coords[-pred.indx, ])
coords.0 <- as.matrix(dat$coords[pred.indx, ])
psi.0 <- dat$psi[pred.indx]
w.0 <- dat$w[pred.indx, , drop = FALSE]
# Package all data into a list
occ.covs <- X[, -1, drop = FALSE]
colnames(occ.covs) <- c('occ.cov')
det.covs <- list(det.cov.1 = X.p[, , 2])
data.list <- list(y = y,
occ.covs = occ.covs,
det.covs = det.covs,
coords = coords)
# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.iter <- n.batch * batch.length
# Priors
prior.list <- list(beta.normal = list(mean = 0, var = 2.72),
alpha.normal = list(mean = 0, var = 2.72),
sigma.sq.ig = list(a = 2, b = 0.5),
phi.unif = list(a = 3/1, b = 3/.1))
# Initial values
inits.list <- list(alpha = 0, beta = 0,
phi = 3 / .5,
sigma.sq = 0.5,
z = apply(y, 1, max, na.rm = TRUE))
# Tuning
tuning.list <- list(phi = 1)
out <- svcPGOcc(occ.formula = ~ occ.cov,
det.formula = ~ det.cov.1,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
priors = prior.list,
cov.model = 'exponential',
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
svc.cols = c(1, 2),
n.neighbors = 15,
search.type = 'cb',
n.report = 10,
n.burn = 50,
n.thin = 1)
summary(out)
# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, verbose = FALSE)