predict.sfJSDM {spOccupancy} | R Documentation |
Function for prediction at new locations for spatial factor joint species distribution model
Description
The function predict
collects posterior predictive samples for a set of new locations given an object of class 'sfJSDM'.
Usage
## S3 method for class 'sfJSDM'
predict(object, X.0, coords.0, n.omp.threads = 1, verbose = TRUE,
n.report = 100, ignore.RE = FALSE, ...)
Arguments
object |
an object of class sfJSDM |
X.0 |
the design matrix of covariates at the prediction locations. This should include a column of 1s for the intercept if an intercept is included in the model. If random effects are included in the model, the levels of the random effects at the new locations should be included as a column in the design matrix. The ordering of the levels should match the ordering used to fit the data in |
coords.0 |
the spatial coordinates corresponding to |
n.omp.threads |
a positive integer indicating
the number of threads to use for SMP parallel processing. The package must
be compiled for OpenMP support. For most Intel-based machines, we recommend setting
|
verbose |
if |
n.report |
the interval to report sampling progress. |
ignore.RE |
a logical value indicating whether to include unstructured random effects for prediction. If TRUE, unstructured random effects will be ignored and prediction will only use the fixed effects and the spatial random effects. If FALSE, random effects will be included in the prediction for both observed and unobserved levels of the unstructured random effects. |
... |
currently no additional arguments |
Value
An list object of class predict.sfJSDM
that consists of:
psi.0.samples |
a three-dimensional array of posterior predictive samples for the latent occurrence probability values. |
z.0.samples |
a three-dimensional array of posterior predictive samples for the latent occurrence values. |
w.0.samples |
a three-dimensional array of posterior predictive samples for the latent spatial factors. |
run.time |
execution time reported using |
The return object will include additional objects used for standard extractor functions.
Note
When ignore.RE = FALSE
, both sampled levels and non-sampled levels of random effects are supported for prediction. For sampled levels, the posterior distribution for the random intercept corresponding to that level of the random effect will be used in the prediction. For non-sampled levels, random values are drawn from a normal distribution using the posterior samples of the random effect variance, which results in fully propagated uncertainty in predictions with models that incorporate random effects.
Author(s)
Jeffrey W. Doser doserjef@msu.edu,
Andrew O. Finley finleya@msu.edu
Examples
set.seed(400)
# Simulate Data -----------------------------------------------------------
J.x <- 7
J.y <- 7
J <- J.x * J.y
n.rep <- sample(2:4, size = J, replace = TRUE)
N <- 5
# Community-level covariate effects
# Occurrence
beta.mean <- c(0.2, -0.15)
p.occ <- length(beta.mean)
tau.sq.beta <- c(0.6, 0.3)
# Detection
alpha.mean <- c(0.5, 0.2, -.2)
tau.sq.alpha <- c(0.2, 0.3, 0.8)
p.det <- length(alpha.mean)
# Draw species-level effects from community means.
beta <- matrix(NA, nrow = N, ncol = p.occ)
alpha <- matrix(NA, nrow = N, ncol = p.det)
for (i in 1:p.occ) {
beta[, i] <- rnorm(N, beta.mean[i], sqrt(tau.sq.beta[i]))
}
for (i in 1:p.det) {
alpha[, i] <- rnorm(N, alpha.mean[i], sqrt(tau.sq.alpha[i]))
}
n.factors <- 3
phi <- runif(n.factors, 3/1, 3/.4)
sp <- TRUE
dat <- simMsOcc(J.x = J.x, J.y = J.y, n.rep = n.rep, N = N, beta = beta, alpha = alpha,
phi = phi, sigma.sq = sigma.sq, sp = TRUE, cov.model = 'exponential',
factor.model = TRUE, n.factors = n.factors)
# Number of batches
n.batch <- 10
# Batch length
batch.length <- 25
n.samples <- n.batch * batch.length
# Split into fitting and prediction data set
pred.indx <- sample(1:J, round(J * .25), replace = FALSE)
# Summarize the multiple replicates into a single value for use in a JSDM
y <- apply(dat$y[, -pred.indx, ], c(1, 2), max, na.rm = TRUE)
# Occupancy covariates
X <- dat$X[-pred.indx, ]
# Coordinates
coords <- as.matrix(dat$coords[-pred.indx, ])
# Prediction values
X.0 <- dat$X[pred.indx, ]
coords.0 <- as.matrix(dat$coords[pred.indx, ])
psi.0 <- dat$psi[, pred.indx]
# Package all data into a list
covs <- X[, 2, drop = FALSE]
colnames(covs) <- c('occ.cov')
data.list <- list(y = y,
covs = covs,
coords = coords)
# Priors
prior.list <- list(beta.comm.normal = list(mean = 0, var = 2.72),
tau.sq.beta.ig = list(a = 0.1, b = 0.1),
phi.unif = list(a = 3/1, b = 3/.1))
# Starting values
lambda.inits <- matrix(0, N, n.factors)
diag(lambda.inits) <- 1
lambda.inits[lower.tri(lambda.inits)] <- rnorm(sum(lower.tri(lambda.inits)))
inits.list <- list(beta.comm = 0,
beta = 0,
tau.sq.beta = 1,
phi = 3 / .5,
sigma.sq = 2,
lambda = lambda.inits)
# Tuning
tuning.list <- list(phi = 1)
out <- sfJSDM(formula = ~ occ.cov,
data = data.list,
inits = inits.list,
n.batch = n.batch,
batch.length = batch.length,
accept.rate = 0.43,
n.factors = 3,
priors = prior.list,
cov.model = "exponential",
tuning = tuning.list,
n.omp.threads = 1,
verbose = TRUE,
NNGP = TRUE,
n.neighbors = 5,
search.type = 'cb',
n.report = 10,
n.burn = 100,
n.thin = 1)
summary(out, level = 'both')
# Predict at new locations ------------------------------------------------
out.pred <- predict(out, X.0, coords.0, verbose = FALSE)