tpfit_me {spMC} | R Documentation |
Maximum Entropy Method for One-dimensional Model Parameters Estimation
Description
The function estimates the model parameters of a 1-D continuous lag spatial Markov chain by the use of the maximum entropy method. Transition rates matrix along a user defined direction and proportions of categories are computed.
Usage
tpfit_me(data, coords, direction, tolerance = pi/8,
max.it = 9000, mle = "avg")
Arguments
data |
a categorical data vector of length |
coords |
an |
direction |
a |
tolerance |
a numerical value for the tolerance angle (in radians). It is |
max.it |
a numerical value which denotes the maximum number of iterations to perform during the optimization phase. It is |
mle |
a character value to pass to the function |
Details
A 1-D continuous-lag spatial Markov chain is probabilistic model which involves a transition rate matrix R
computed for the direction \phi
. It defines the transition probability \Pr(Z(s + h) = z_k | Z(s) = z_j)
through the entry t_{jk}
of the following matrix
T = \mbox{expm} (h R),
where h
is a positive lag value.
To calculate entries of the transition rate matrix, we need to maximize the entropy of the transition probabilities of embedded occurrences along a given direction \phi
. The entropy is defined as
e = - \sum_{k}^K \sum_{j \neq k}^K \tau_{jk, \phi} \log \tau_{jk, \phi},
where \tau_{jk, \phi}
are transition probabilities of embedded occurrences. It is maximized by the use of the iterative proportion fitting method.
When some entries of the matrix R
are not identifiable, it is suggested to vary the tolerance
coefficient or to set the input argument mle
to "mlk"
.
Value
An object of the class tpfit
is returned. The function print.tpfit
is used to print the fitted model. The object is a list with the following components:
coefficients |
the transition rates matrix computed for the user defined direction. |
prop |
a vector containing the proportions of each observed category. |
tolerance |
a numerical value which denotes the tolerance angle (in radians). |
Author(s)
Luca Sartore drwolf85@gmail.com
References
Carle, S. F., Fogg, G. E. (1997) Modelling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7), 891-918.
See Also
predict.tpfit
, print.tpfit
, multi_tpfit_me
Examples
data(ACM)
# Estimate the parameters of a
# one-dimensional MC model
tpfit_me(ACM$MAT5, ACM[, 1:3], c(0,0,1))