predict.multi_tpfit {spMC} | R Documentation |
Compute Theoretical Multidimensional Transiograms
Description
The function computes theoretical transition probabilities of a d
-D continuous-lag spatial Markov chain for a specified set of lags.
Usage
## S3 method for class 'multi_tpfit'
predict(object, lags, byrow = TRUE, ...)
Arguments
object |
an object of the class |
lags |
a lag vector or matrix of |
byrow |
a logical value; if |
... |
further arguments passed from other methods. |
Details
A d
-D continuous-lag spatial Markov chain is probabilistic model which is developed by interpolation of the transition rate matrices computed for the main directions. It defines the transition probability \Pr(Z(s + h) = z_k | Z(s) = z_j)
through the entry t_{jk}
of the following matrix
T = \mbox{expm} (\Vert h \Vert R),
where h
is the lag vector and the entries of R
are ellipsoidally interpolated.
Value
An object of the class multi_transiogram
is returned. The print.multi_transiogram
function is used to print computed probabilities. The object is a list with the following components:
Tmat |
a 3-D array containing the probabilities. |
lags |
a matrix containing the lag vectors. |
type |
a character string which specifies that computed probabilities are theoretical. |
Author(s)
Luca Sartore drwolf85@gmail.com
References
Carle, S. F., Fogg, G. E. (1997) Modelling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7), 891-918.
Sartore, L. (2010) Geostatistical models for 3-D data. M.Phil. thesis, Ca' Foscari University of Venice.
See Also
multi_tpfit
, print.multi_tpfit
, image.multi_tpfit
, tpfit
, transiogram
Examples
data(ACM)
# Estimate the parameters of a
# multidimensional MC model
RTm <- multi_tpfit(ACM$MAT3, ACM[, 1:3])
# Generate the matrix of
# multidimensional lags
lags <- expand.grid(X=-1:1, Y=-1:1, Z=-1:1)
lags <- as.matrix(lags)
# Compute transition probabilities
# from the multidimensional MC model
predict(RTm, lags)