predict.multi_tpfit {spMC} | R Documentation |
Compute Theoretical Multidimensional Transiograms
Description
The function computes theoretical transition probabilities of a -D continuous-lag spatial Markov chain for a specified set of lags.
Usage
## S3 method for class 'multi_tpfit'
predict(object, lags, byrow = TRUE, ...)
Arguments
object |
an object of the class |
lags |
a lag vector or matrix of |
byrow |
a logical value; if |
... |
further arguments passed from other methods. |
Details
A -D continuous-lag spatial Markov chain is probabilistic model which is developed by interpolation of the transition rate matrices computed for the main directions. It defines the transition probability
through the entry
of the following matrix
where is the lag vector and the entries of
are ellipsoidally interpolated.
Value
An object of the class multi_transiogram
is returned. The print.multi_transiogram
function is used to print computed probabilities. The object is a list with the following components:
Tmat |
a 3-D array containing the probabilities. |
lags |
a matrix containing the lag vectors. |
type |
a character string which specifies that computed probabilities are theoretical. |
Author(s)
Luca Sartore drwolf85@gmail.com
References
Carle, S. F., Fogg, G. E. (1997) Modelling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29(7), 891-918.
Sartore, L. (2010) Geostatistical models for 3-D data. M.Phil. thesis, Ca' Foscari University of Venice.
See Also
multi_tpfit
, print.multi_tpfit
, image.multi_tpfit
, tpfit
, transiogram
Examples
data(ACM)
# Estimate the parameters of a
# multidimensional MC model
RTm <- multi_tpfit(ACM$MAT3, ACM[, 1:3])
# Generate the matrix of
# multidimensional lags
lags <- expand.grid(X=-1:1, Y=-1:1, Z=-1:1)
lags <- as.matrix(lags)
# Compute transition probabilities
# from the multidimensional MC model
predict(RTm, lags)