spinar_penal {spINAR} | R Documentation |
Penalized semiparametric estimation of INAR models
Description
Semiparametric penalized estimation of the autoregressive parameters and the innovation distribution of INAR(p
) models,
\code{p} \in \{1,2\}
. The estimation is conducted by maximizing the penalized conditional likelihood of the model. If both
penalization parameters are set to zero, the function coincides to the spinar_est function of this package.
Usage
spinar_penal(x, p, penal1 = 0, penal2 = 0)
Arguments
x |
[ |
p |
[ |
penal1 |
|
penal2 |
|
Value
Vector containing the penalized estimated coefficients \code{alpha}_1,...,\code{alpha}_p
and the penalized
estimated entries of the pmf \code{pmf}_0, \code{pmf}_1
,... where \code{pmf}_i
represents the probability of
an innovation being equal to i
.
Examples
# generate data
dat1 <- spinar_sim(n = 50, p = 1, alpha = 0.5,
pmf = c(0.3, 0.25, 0.2, 0.15, 0.1))
# penalized semiparametric estimation
spinar_penal(x = dat1, p = 1, penal1 = 0, penal2 = 0.1)